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Program verification refers to the idea that the intent or effect of a program can be stated 

in a precise way that is not a simple "rewording" of the program itself, and that one can 

prove (in the mathematical sense) that a program actually conforms to a given statement of 

intent. This thesis describes a software system which can verify (prove) some non-trivial 

programs automatically. 

The system described here is organized in a novel manner compared to most other 

theorem-proving systems. IL has a great deal of specific knowledge about integers and arrays 
of integers, yet it is not "special-purpose", since this knowledge is represented in procedures 

which are separate from the underlying structure of the system. It also incorporates some 

knowledge, gained by the author from both experiment and introspection, about how 

programs are often constructed, and uses this knowledge to guide the proof process. It uses 

its knowledge, plus contextual information from the program being verified, to simplify the 

theorems dramatically as they are being constructed, rather than relying on a super-powerful 

proof procedure. The system also provides for interactive editing of programs and 

assertions, and for detailed human control of the proof process when the system cannot 

produce a proof (or counter-example) on its own. 
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PRELIMINARIES 

Introduction 

This thesis is about automatic program verification. Program verification refers to the 

idea that one can state the intended effect of a program in a precise way that is not merely 

another program, and then prove rigorously that the program does (or does not) conform 

to this specification. Automatic refers to the hope that if we can understand enough about 

the structure of programs and the structure of proofs, we can build systems that perform 

some or all of this verification task for us. 

The computing community has two good reasons for being interested in automatic 

verification. The first is practical. Most large software systems never work reliably, and a 

study suggests [Bell] that the initial quality of such systems has a surprisingly large 

influence over their reliability during their entire lifetime. For such systems, it is clear 

that automated aids to verification will be required, since hand-verification would be 

impossibly tedious. In the short run, the "structured programming" approach of Dijkstra 

[Dijkl], which attempts to codify and enforce good programming practices such as 

limiting interactions between program modules, is likely to prove more valuable than 

verification: this approach is already being adopted [Millsl] in an effort to hold -down 

software costs. However, such an approach can only reduce the likelihood of errors, and 

does not offer the kind of security attainable through verification. Another idea 

advocated by a few, that of "graceful recovery" from software errors [Basl], seems like a 

serious mi~application of an idea which works very well for hardware errors. 
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Verification is also important to computing because of its place in the historical trend 

which has constantly brought programming languages closer to the problem domain of the 

end user. This process has required transferring more and more of what were originally 

thought of as "programming" tasks to the machine, and this in turn has required 

increasingly deep understanding of the process of programming. The author believes that 

his automatic verification system succeeds as well as it does because it represents a 

successful encoding of the structure of programs. To this extent, it constitutes a 

contribution to the emerging area of automatic programming, a term which refers to a 

group of ambitious attempts to throw much more of the detailed design of algorithms and 

data structures onto the machine than was previously thought possible. A recent survey by 

Balzer [Ball] gives a good idea of the scope of these attempts. 

The author has built and checked out an automatic verification system called PIVOT 

(Programmer's Interactive Verification and Organizational Tool). There has been one 

other published automatic verification system, that of James C. King, reported in his 

Ph.D. thesis (issued in 1970). PIVOT owes an enormous amount to King's system in 

certain specific areas, notably representation and simplification of arithmetic expressions, 

although the organization of PIVOT is quite different from that of King's Verifier. There 

will be numerous references and comparisons to King's work strewn throughout this 

thesis. However, there have been considerable advances in artificial intelligence in the 

past three years, and the present work has made use of some of them, particularly the work 

of the QA4 group at Stanford Research Institute (Derksen, Rulifson, Waldinger, et al.) 

(Rull] to which there will also be frequent references. 

Perhaps the most interesting result of the author's experiences over the year and a half 

spent developing PIVOT is the observation that program verification seems to be a task 

significantly different from that of proving mathematically interesting theorems. The 

verification task involves verifying the consistency of a network of state descriptions: the 

verification of each individual arc of this network, which corresponds to a partial path 

through the program, is as much like executing the program in an abstract algebraic 

domain as it is like proving theorems about what the program is doing. This observation 
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has been made independently by other researchers [Burl] [Rohl]. The author was not 

committed to this view when he began; it arose progressively from his experience with his 

system. The sections "Program overview" and "Theorem generator" in the next chapter 

will describe the structure of the system in more detail in this regard. 

The organization of this thesis roughly follows the structure of the actual program. 

Chapter I is introductory. Chapter II describes the language used to input programs. 

Chapter Ill, which covers the organization of the program, and Chapter IV, which 

describes the mechanisms used to perform ongoing deductions, case analysis, and global 

simplification contain the principal original material. Chapter V describes the internal 

representation of expressions and programs. Chapter VI describes the appearance of the 

system to the user. Chapter VII is an attempt to assess the author's work in the larger 

context of research in artificial intelligence and general computer science. 

Many theses represent the endpoint of a piece of research. This one does not: it represents 

a stage in a long-term research plan at which the author felt it was appropriate to pause to 

communicate his work. The instantaneous state of such a research project is always a 

mixture of implemented procedures, well-understood but unprogrammed solutions to 

problems, and more or less clear personal understandings of problems which have not yet 

reached the stage of algorithmic solution. Consequently, there are numerous statements in 

this thesis of the form "X is understood but not implemented yet". Large programs such 

as PIVOT also do not remain unchanged from one month to the next; the reader may 

forgive possible minor inconsistencies arising from changes in PIVOT during the time this 

thesis was being written. 
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Notation 

Every mathematical· or computer-oriented paper prepared with computer assistance has the 

problem that the available character set is deficient in some crucial area. In the first 

printing of this thesis, it was necessary to substitute the following symbols: 

Intended Appeared as Meaning 

/\ & Conjunction, logical AND 

v Disjunction, logical OR 

~ => Implication 

.... ·- Assignment .-
A A{i} Subscripting 

In the current printing, however, the desired symbols are available and have been used 

where appropriate. The universal and existential quantification symbols, V and 3, have 

also replaced the overstrike combinations used in the first printing. 

Every paper of this sort also has a quotation problem, i.e., some device must be chosen to 

distinguish between ~ used to mean the actual symbol "x" and ~ used to stand for any of a 

class of symbols, expressions, etc. The device adopted here is to use upper case for the 

former and lower case for the latter. For example, (fn X) is a list whose first element is 

any function and whose second element is the actual symbol "X". 

The syntax equations in this thesis are written in a dialect of the Backus-Naur Form, 

BNF. The example immediately below illustrates all features of this notation. 

<sum>::= <term>${+ <term> I - <term>} 

<term> ::= [ - ] <primary> 

<primary> ::= <id> I <num> I ( <sum> ) 
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Dollar sign ($) means "O or more of the following". Braces {} are used as 

meta-parentheses for grouping. Square brackets mean "optionally" or· "O or 1 of". 

Quotation marks are used to delimit literals containing the meta-syntactic characters: "$", 

"I", "{", "}", "[", and "]". There are four special defined entities: <id> (identifier), 

<num> (number). <str> (string), and <punc> (punctuation mark). A <str> is any string 

of characters surrounded by quotation marks. A <punc> is any printing character on the 

keyboard other than letters, digits, or quotation mark. The other two are defined below: 

<id> ::= <letter> ${<letter> I <digit>} 

<num> ::= <digit> $<digit> 

<letter> ::= A I B I C I D I E I F I G I H I I I J 

K LIMINIOIPIQIRISIT 

UIVIWIXIYIZ 

<digit> ::= O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 

Theoretical background 

The present work is based on the Floyd theory of program verification. This theory has 

been discussed and explained at great length elsewhere, in particular in King's thesis, so the 

sketch here will be brief. The idea is that we take programs represented as flow charts and 

attach predicates to their edges. These predicates are in a formal language (typically a 

first-order predicate calculus in which the function and predicate symbols are 

interpreted). The free variables of the predicates refer to the values qf the program 

variables, so that each predicate can be thought of as describing a set of machine states; 

the predicate on a given edge specifies a state set which includes the set of possible states 

when control reaches that edge. We can represent these predicates as _applied to a single 

variable S, the entire machine state, rather than the individual variables. Now if we have 
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predicates P(S) and Q(S) separated by a flowchart box whose effect can be described as S 

~ f(S), then we say that part of the program is "partially correct" if we can prove the 

theorem 

(VS)( P(S)::JQ(S,f (S))). 

Similarly, if the effect of the box is to test r(S), the theorem is 

('r/ S)( P(S)/\ r(S)::JQ(S) ). 

We say the program as a whole is "partially correct" if we can prove all these theorems. 

(This requires choosing predicates for the starting and stopping points of the program as 

well as all the internal edges, of course.) A similar method can be used to show that the 

program actually reaches its stopping point if the initial values of the variables satisfy the 

starting predicate: if the program is partially correct and also stops for all legal initial 

values, we say the program is "correct". 

While this approach has an appealing simplicity, it suffers from a number of difficulties 

in practical use. One is that the semantics of the programming language must be fully 

understood. Recent work by Hoare, attempting to define precisely certain common 

program constructs such as the ALGOL 60 procedure call [Hoarel], reveal just how 

difficult this task is. The author feels that this difficulty will eventually be overcome by 

the development of "cleaner" programming languages, and has not attempted to produce a 

system which accepts any real language. The input language for PIVOT is a simple 

statement-oriented language reminiscent of ALGOL W [Wirthl]: it has arrays and 

records, WHILE loops but no GOTO, compound statements but not block structure and 

only call-by-value for procedures. The semantics of pointers and structured data follow 

what Morris [Morl] calls the "pointer-swinging" approach. The complexities of 

numerical analysis, a good deal of which is concerned with correctness questions of a 

different sort, have been avoided by restricting scalar variables to unbounded integers. 

A second drawback of the Floyd approach is that for it to be reasonably amenable to 

machine manipulation, the author of the program must supply enough predicates to cut 

every loop in the flowchart, although for human proof this can sometimes be avoided if 

the inner loops are simple enough. It turns out that generation of the proper predicates is 
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a substantial intellectual task. Knuth suggests that a programmer does not fully 

understand his program if he cannot supply these predicates, and there is some merit to 

this view, but it presents a substantial barrier to acceptance of verification as a tool for 

producing correct programs. PIVOT does not attack this problem directly, although the 

author has done a small amount of work not reported in this thesis on generating some of 

the simpler predicates automatically, especially those required to prove halting, which are 

usually much simpler. Some very recent work by Wegbreit [Wegl] shows great promise in 

this area. 

A third difficulty with the Floyd assertion method is that each predicate must specify 

everything that needs to be known about the state to show correctness of paths originating 

at that predicate; this tends to require, for example, that the input specifications be 

repeated in every predicate even if 'the input variables never change. This problem arises 

from the fact that each theorem must in principle be provable independently of every 

other. PIVOT attacks this problem through a notational convenience which allows the 

programmer to specify predicates which must remain true over sections of the program 

rather than being true at a single control point. (Interestingly, a similar idea was suggested 

by Peter Naur in one of the very earliest papers on verification [Naurl].) PIVOT also 

automatically propagates through the program any assertions referring only to variables 

known to be invariant. 

In addition to these practical difficulties with the Floyd method, the verification problem 

using this method is theoretically only semi-decidable if the predicates are expressed in a 

first-order calculus, which seems to be the weakest suitable language. Even if the program 

deals exclusively with integers, recent results show that certain simple problems are 

unsolvable [Davl] or only solvable in exponentially long time [Rabi]. However, these 

theoretical limitations have not caused the author any practical problems: the theorems 

that arise from the programs he has investigated are all quite simple, and he feels that this 

is true of programs in general, provided that their operation does not depend on subtle 

mathematical theorems (which relatively few do). 
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Quite apart from intrinsic difficulties with the method, there are implementation 

problems in organizing the theorem-proving process even for the situation where one is 

fairly sure a proof exists. Like King's system, PIVOT implicitly adopts a pragmatic 

attitude: when they exhaust a fixed set of theorem-proving techniques, they give up. 

However, since one of PIVOT's techniques is a restricted form of resolution [Robla], the 

computation may proceed for an unreasonably long time and perhaps even fail to 

terminate. PIVOT can detect that a theorem has a counter-example in certain cases, and is 

currently being modified to exhibit it to the user. Interactive direction of the proof 

procedure by the user, at least to the extent of being able to define and force application 

of simplification or deduction rules, is not difficult to implement: a number of other 

research groups are following this route [Luckl] [Mill] [Guardl] and such a facility has 

recently been added to PIVOT. Interactive assistance also seems like a promising solution 

to the inability of most known proof systems (including PIVOT) to generate inductive 

proofs automatically, although some efforts [Wegl] [Buel] [Wall] [Boyl] are being 

directed towards automatic recognition of some common types of induction. 
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INPUT LANGUAGE 

Program structure 

PIVOT uses an algebraic, statement-oriented language for the programs to be analyzed. 

The author rejected the obvious alternative, LISP, on the grounds that it was not 

particularly suitable for transformation into flowchart form, that the published programs 

chosen as benchmarks were written in ALGOL already, and that using a parser which 

provided the ability to define the syntax of the language would allow experimentation 

with the idea that the language structure could affect ease of verification. 

PIVOT programs are organized in terms of modules. A procedure module, or simply 

procedure, consists of a header giving the procedure name, declarations for the input and 

output variables and structured local variables, and a body containing assertions and 

executable statements. (Procedure modules are like ALGOL procedures, except that textual 

nesting is not allowed and all parameters are transmitted by value.) A declaration module 

has a header and declarations only. Declaration modules are similar to 

macro-instructions: the INSTANCE statement inserts a copy of a declaration module 

in-line. Declaration modules are not especially useful in PIVOT at present: their existence 

is motivated by the "structured programming" principle that definitions which are 

required in many places should only be written in a single place. 

Within each module statements are numbered. The numbers are strictly for editing and 

sequencing purposes. Intra-program references are not by number, as in BASIC for 

example, but by label. The only semantic significance of statement numbers is that 

numbers below 100 are reserved for declarations and numbers above are reserved for 

non-declarations. 
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The semantics of variables are especially simple. All variables are local to the 

procedure module in which they appear. Undeclared variables are assumed to be local 

scalars. This requires that all information accessible to a procedure be passed to it by 

the caller. Of course, this attitude is not satisfactory for a real programming system; it 

was adopted in order to defer questions relating to global side-effects until a later stage 

of the research. 

<procedure-head> : := PROCEDURE <id> <formal-parameters> 

<declaration-head>: :=DECLARATIONS <id> <formal-parameters> 

<declaration> : :=DECLARE <declaration-mode> <name-list> 
INSTANCE <id> <optional-parameters> I 
LET <id> <formal-parameters> = 

<general-expression> 

<declaration-mode> : := ARRAY [ ( <number-of-
dimensions> ) ] I 

RECORD <formal-parameters> 
SCALAR I 
<record-name> 

<number-of-dimensions> <num> 

<record-name> : := <id> 

<name-list> ::=<id>${, <id>} 

<formal-parameters> : := [( <name-list> )] 

<optional-parameters> : := [( <parameters> )] 

<parameters> : := [<expression> ${, <expression>}] 

Fig. 11-1 
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<statement> ::= [: <label> :] <statement-body> 

<statement-body> ::= ASSERT <q-relation-list> I 
LEMMA <q-relation-list> I 
ASSUME <q-relation-list> J 
IF <rel-expression> THEN 

{BEGIN I <simple-list>} 
BEGIN I . 
LOOP I 
WHILE <rel-expression> : 

{BEGIN I <simple-list>} 
REPEAT : BEGIN I 
ELSE {BEGIN I 

<simple-list> I 
IF <rel-expression> THEN 

{BEGIN I <simple-
1 ist>}} 

END I 
DECLARE <q-relation-list>' I 
CANCEL <label> 
..... " I 
<simple-list> 

<simple-list> ::=<assignment>${; <assignment>} 
[; <branch>] 
l <branch> 

<assignment> ··=<left-hand-side>{~ I :=}<expression> 

<branch> ::=EXIT <label> 
NEXT <label> 

<label> : := <id> 

Fig. 11-2 

11-3 
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<q-relation-list> : := <q-relation> ${, <q-relation>} 

<q-relation> : := <general-expression> 

<rel-expression> ::=<general-expression> 

<expression> ::=<general-expression> 

<general-expression> : := IF <rel-expression> 
THEN <general-expression> 
ELSE <general-expression> 

<non-q-relation> 

<non-q-relation> ::=<disjunction> (IMP <disjunction>] 

<disjunction> : := <conjunction> ${<or-symbol> <conjunction>} 

<or-symbol> : :=OR I ! 

<conjunction> : := <relation> ${<and-symbol> <relation>} 

<and-symbol> : := ANO I & 

<relation> : := NOT <relation> I 
.FA <quantifier-tail> I 
.EX <quantifier-tail> 
<arith-expression> ${<rel-symbol> 

<arith-expression>} 

<rel-symbol> ::= = I # I < [=] I > [=] 

<quantifier-tail> : := ( <general-expression> ${, 
<general-expression>} 
[: <q-relation-list>] 
<relation> 

<arith-expression> : := <term> ${+ <term> I - <term>} 

<term> : := <factor> ${* <factor> I I <factor> I MOO <factor>} 

<factor> : := <negative> ${<exponentiation-symbol> <negative>} 

<exponentiation-symbol> ::= * * I t 

<negative> : := [-] <primary> 

<primary> : := CREATE <record-type> I 
<left-hand-side> [( <parameters> )] I 
<num> I 
<str> 
( <general-expression> 

<record-type> : := <id> 

<left-hand-side> : := [$] <id> {"[" <expression> $f, 
<expression>} ~]" I 
${. <field-name>}} 

<field-name> <id> 

Fig. 11-3 

II-4 
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Declarations 

Figure 11-1 gives the syntax of declarations. A variable (name) may be declared as one of 

four types: an array of a given number of dimensions, a scalar (unbounded integer), a 

pointer to a record of a previously defined type, or a record type. Record types carry a 

list of field namBs (formal parameters): the field selection operator takes a record variable 

on the left and a field name appropriate to that record on the right. Neither field names 

nor array names are values, i.e., they cannot be computed, so the relationship between 

record pointers and field names is essentially the same as between array indices and array 

names. These simple semantics allow expression of many programs that manipulate 

structured data, but avoid the more difficult questions concerning design of data 

structuring facilities in programming languages, such as the proper treatment of coercions 

and unions. 

To cover the need for abbreviation, the LET statement provides a macro-definition 

capability at the expression level. For example, one could define an abbreviation for the 

maximum of two quantities as 

LET MAX(X,Y) = IF X>Y THEN X ELSE Y. 

The substitution is macro-like, but preserves the intended scope of operators by 

effectively surrounding the actual parameters and the expanded definition with 

parentheses when required: for example, MAX(X,Y)+l effectively expands to (IF X>Y 

THEN X ELSE Y)+l rather than IF X>Y THEN X ELSE Y+l. Note that since the 

expression on the right is a general-expression, LET can be used to define predicates or 

assertions, i.e., it is not restricted to arithmetic contexts. 

INSTANCE calls for insertion of a copy of a declaration module with actual parameters 

substituted for formal. As with LET, the substitution is macro-like. In particular, 

variables in the declaration module which are not formal parameters of the module are 

treated like any other variables of the procedure in which the INSTANCE statement 

appears, since the statements of the declaration module are literally copied in-line to 
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effectively replace the INSTANCE statement. The intended use of declaration modules 

and INSTANCE is to provide a library of parameterized assertions. For example, suppose 

one wants to have the idea of an array being sorted readily available. The following 

declaration module would serve: 

DECLARATIONS SORTED(A,N) 

100 ASSERT .FA(J:l <=J<N)A[J]<=A[J+l] 

Then to assert that a particular array Al of size Nl was sorted one could write 

250 INSTANCE SORTED(Al,Nl). 

As it happens, in this case one could achieve the same effect by the declaration 

1 LET SORTED(A,N) = .FA(J:l<=J<N)A[J]<=A[J+l] 

and a subsequent call 

250 ASSERT SORTED(Al,Nl). 

The distinction between LET definitions, which only generate a single expression and are 

local to one procedure, and declaration modules, which generate one or more statements 

and are accessible to all procedures, is somewhat arbitrary; both constructs will probably 

be superseded by a more general scope structure and a more general definition facility in 

some future version of PIVOT. 

Statements 

The syntax of statements other than declarations appears in Figure 11-2. Groups of 

ASSERT statements mark points in the program with two properties: the asserted relations 

are to be assumed for all control paths leading away from the point, and the relations are 

to be proved necessarily true for all control paths leading to the point. DECLARE 

statements are like ASSERTs except that they are implicitly copied as part of every 

interior group of ASSERTs. (This provides the notational convenience mentioned in the 

introductory section on theoretical background.) For cases where it is temporarily 

necessary to override a DECLARE, the CANCEL statement appearing in an ASSERT 

group cancels an enclosing DECLARE statement with the specified label. The LEMMA 

statement allows the user to provide "hints" for PIVOT: a LEMMA must be proved for all 
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incoming paths and is assumed for all outgoing paths, but does not itself delimit paths. 

The ASSUME statement allows the user to specify truths (axioms) to be accepted on faith. 

The semantics of the control statements are simple. For tests, there are IF statements and 

ELSE statements (the THEN clause is part of the IF). Loops are a little less conventional. 

The LOOP statement signals the beginning of a loop, but the WHILE statement (or 

REPEAT. which means "repeat forever") actually begins the body. This arrangement 

allows insertion of assertions between the LOOP and the WHILE, which are checked both 

before the first entry into the loop and after each iteration. (Earlier versions of PIVOT 

did not provide this facility, which made it necessary to write two copies of the assertions 

if these semantics were desired.) For abnormal exit from a loop, the EXIT statement 

looks for an enclosing statement with the specified label and branches to the statement 

following the end of the loop body, if a LOOP statement, or the END, if a BEGIN. The 

. NEXT statement searches for an enclosing IF or ELSE IF and effectively revokes the 

decision, forcing the succeeding ELSE to be executed. EXIT and NEXT are present in 

some form in several modern programming languages and seemed conceptually cleaner 

than GOTO: for one thing, they make the problem of detecting unreachable statements 

trivial. Doing all control in terms of BEGIN-END pairs also makes possible attractively 

indented listings of procedures which indicate the logical structure. Early versions of 

PIVOT used GOTO, which was not much harder to analyze for purposes of path 

generation but which produced less readable programs. 

This !'eaves assignments and the " ... " statement. Assignments to simple variables, array 

elements, or structure components are allowed. Assignment to a variable declared as a 

record pointer just changes the pointer: this is like LISP and most other languages that 

recognize the existence of pointers. " ... " is used to indicate a gap in the program. Its only 

effect is to prevent verification from being attempted on any paths that pass through it. 

In the future, " ... " will prompt PIVOT to analyze the surrounding program for qualities 
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which the missing code must possess, such as requirements that certain variables be 

changed, or even the requirement that a certain assignment be done. This statement was 

added to PIVOT very recently, as an implementation of the idea suggested in Appendix C. 

Expressions 

The syntax of expressions appears in figure 11-3. Most of the syntax is quite conventional 

and transparent. The distinction between the three kinds of expressions is a semantic one: 

<q-relation>s may contain quantifiers and must be predicates, <rel-expression>s must not 

contain quantifiers and must be predicates, and <expression>s must not contain 

quantifiers and must be arithmetic. Thus, for example, quantifiers are only allowed in 

ASSERT, LEMMA, and DECLARE statements. (There is a school of thought which says 

that quantifiers should be considered as abbreviations for loops and should therefore 

always be restricted in ways which make them potentially executable [Weg2]. While the 

present author has some sympathy for this view, he considers it too restrictive.) 

Quantifiers have the general form 

. {FA I EX} ( <variables> : <range> ) <body> 

where the range and body are any predicates. As variations, the range may be omitted, or 

the variables may be omitted and marked with a preceding $ at any occurrence in the 

range, or a combination of the two: 

.FA(l <=$J< N)A[J]=O 

is equivalent to 

.FA(J:l<=J < N)A[J]=O 

or to 

.FA(J)(l<=J AND J<N IMP A[J]=O). 

The CREATE operator creates a new instance of the given record and returns a pointer to 

it. The only other point worth noting is the syntax of <left-hand-side>. The initial $ is 

for quantifiers, as just mentioned. Brackets are used for array indexing and "." for field 

selection. As remarked above, the semantics disallow computing an array name or a field 

name, so the syntax does not allow it either. 
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PROCESSING STRUCTURE 

Program overview 

As Figure 111-1 shows, PIVOT's processing of a program occurs in stages. When the 

program is input, either by being typed or from file storage, it is parsed strictly 

statement-by-statement and stored. When further processing is required, each statement is 

individually converted to a canonical form. All internal computations are in this form. 

(The specification of the canonical form appears as Chapter V.) The next step is a scan 

over the program to collect declarations and to match up BEGIN-END pairs. Then 

another scan is made to determine all control paths through the program: the endpoints of 

these paths are (groups of) ASSERT statements, and there must be no loops lacking such 

statements. Figure 111-2 shows this process in more detail for a simple example. 

In further processing, each path is treated separately. PIVOT works forward along the 

path, building up data bases which record the assertions at the beginning of the path and 

the outcomes of IF and WHILE tests along the path (the "clause data bases") and the 

assignments made to variables (the "value data bases"). Assigned values are represented in 

terms of the values possessed by variables at the beginning of the path: after the 

assignments 

X +- Y+Z 

Y +- Z+l 

the value of X would be recorded as "Y+Z" and of Y as "Z+l". When the ASSERT 

statements at the end of the path are reached, the assigned values are substituted for 

variable names and the negations of the result are added to the relation data bases, in 

anticipation of the theorem proving process (whose aim is to produce a contradiction). 

King's system works backward along the path, making a substitution into the goat 
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assertion at every assignment; the author's method substitutes previously assigned values 

into each assignment, but only substitutes into the (generally much larger) goal assertion 

once, at the end of the path, and hence is more efficient. (The difference between the two 

methods is analogous to evaluating lambda-expressions using an A-list [McCar3] instead 

of by substituting values for bound variables.) The author was also led to choose the 

forward method for PIVOT because he fell more comfortable with it and because it is 

better adapted to the author's intuitively motivated treatment of arrays. 

The final theorem proving stage works on each theorem separately. One path may produce 

many theorems, because there may be several ASSERTs at the end of it or because several 

cases may have been created to deal with array assignments (the latter possibility is 

discussed in detail later in this chapter). Each theorem is stored as a set of clauses, and 

the theorem prover just iterates over these clauses with a set of transformations until a 

contradiction appears or no further transformations are applicable. 

The major departure from King's system arises in the theorem generating process. 

Whereas King's system largely ignores interactions between the various assertions and 

assignments during its theorem generation phase. PIVOT builds up a set of clauses which 

are known to be "true" as it moves along a path and can use them to simplify expressions 

encountered later. For example, when PIVOT passes through a test like WHILE l<N on a 

path that assumes that it succeeds, PIVOT enters the clause l<N into a data base. Then, 

for example, if an assignment is made to A[N] and a later reference is made to A[I], the 

information that the latter cannot refer to the same element as the former is instantly 

available. In fact, this kind of on-the-fly deduction prevents a sizable number of 

theorems from reaching the theorem prover at all, since they are deduced to be "true" as 

they are generated. Chapter JV discusses this process (which is the heart of the author's 

original work) in detail, with particular reference to the mechanism used to make it 

inexpensive. 
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ASSERT Y B >= 0 

x ~ 0 

LOOP 
WllILE no: BEGIN 
x ~ x + A 
y ~- y - 1 
ASSERT X = A*(B-Y), Y>=O 

END 

ASSERT X = A*B 

(ASSERT (AND (EQUAL y B) 

(GEQ B O))) 
(SETQ X 0) 
(LOOP) 
(BLKl-n!ILE (NEQUAL Y O)) 
(SETQ X (PLUS X A)) 

(SETQ Y (DIFFERENCE y 1)) 
(ASSERT (AND (EQUAL X (TIMES A 

(DffFERENCE B Y))) 

(GEQ Y O))) 
(END) 

(ASSERT (AND (F.QUAL X 
(TIMES A B)))) 

(ASSERT (AND (EQUAL (PLUS 0 B 
(TIMI:S -1 Y)) 0) (GEQ B 0)) 

(SETQ X O) 
(LOOP) 
(BLKWHILE (NEQUAL Y 0)) 
(SETQ X (PLUS 0 A X)) 
(SETQ Y (PLUS -1 Y)) 

(ASSERT (AND (EQUAL (PLUS 0 x 
(TIMES -1 A B) 
(TIMES l A Y)) O) 

(GEQ Y 0))) 
(END) 
(ASSERT (EQUAL (PLUS 0 X 

(TIMES -1 A B)) 0)) 
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Contexts 

PIVOT incorporates a powerful and general mechanism for incremental incorporation of 

information, i.e., representing theorems and program states in terms of their differences 

from previous states. To see the value of such a mechanism, consider the process of proof 

by contradiction which PIVOT uses, i.e., proving a theorem c1/\ ... /\cn:Jd means deriving a 

contradiction from c1/\ ... /\c/\-d. The proof process transforms this set of clauses by 

adding, modifying, or deleting individual clauses; it is clearly desirable to have a method 

for doing this without copying the entire theorem each time. If at some point it seems 

desirable to try a proof by cases, it is valuable to be able to do each subproof 

independently, yet without making a copy of the theorem and with the ability to reflect 

transformations that do not depend on assumptions particular to the subproof back into 

the main proof. An incremental representation mechanism is also useful in theorem 

generation: when a path reaches an IF statement, one would like a method of splitting it 

into two paths without having to copy the clauses and assignments to variables which have 

been made up to that point 

PIVOT provides this mechanism in a form due to the QA4 group: rather than providing 

many autonomous instances of the data bases for the different paths, theorems, etc., each 

data base is actually organized as a tree. The trees for all data bases grow in parallel. 

Each group of parallel nodes is assigned a number called its context index-. the group is 

identified internally by a context which is ~ list of all the context indices on the path 

from the given node to the root (whose index is 1). All processing occurs with respect to 

a particular context: the state of the data bases at any moment, as seen by any program 

which uses the data bases, is obtained by logically "overlaying" ~he successive nodes from 

the root to the referenced context. The example in figure 111-3 may help clarify this idea. 
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Proqram being verified: 

100 ASSERT Y>=O, B=Y 
110 x + 0 
120 LOOP 
125 WHILE Y#O: BEGIN 
150 x + x + A 
160 y + y - l 
170 ASSERT X=A* (B-Y) , Y>=O 
190 END 
200 ASSERT X=A*B 

Context tree, clauses and assignments for paths beginning 100 •.. 125: 

-~2Y!~o~ 
.2 B=Y 
of X is 0 

(3 2 1) (4 2 1) 
Cancel 2.1 
3.1 Y=O (From 125, case where 

test fails) 
3.2 OIA*B (Negation of goal 200, 

substituting 0 for X) 

Clauses "seen" in leaf contexts: 

(3 2 l) 
2.2 B=Y 
3.1 YsO 
3.2 O#A*B 

(4 2 1) 
2.2 B=Y 
4.1 Y>O 
4.2 A#A *(B-(Y-1)) ! (Y-1)<0 

Fig. III-3 

Cancel 2.1 
4.1 Y>O (I.e. Y>=O&Y#O, from 125, 

case where test succeeds) 
Value of X is A (X+A substituting 

0 for X) 
Value of Y is Y-1 
4.2 A#A* (B-(Y-1)) :(Y-1)<0 

(Negation of 170 substituting 
A for X and Y-1 for Y) 
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As the example shows, entries can be removed in a deeper context (e.g., clause 2.1 in 

contexts 3 and 4) or replaced (e.g., the value of X being reset in context 4) as well as added 

(e.g., clauses 3.2 and 4.2). The process of determining what information is "seen" in a 

given context can be represented by imagining each context as a transparent sheet on 

which information added in that context appears and deletion lines are drawn in places 

corresponding to information in lower contexts which has been cancelled or superseded: if 

one stacks up the sheets, with the root context at the bottom, the correct composite state is 

visible from the top. 

The context mechanism has been one of the most versatile internal mechanisms in 

PIVOT. Its main use in the early versions was for proofs by cases, but it came to be 

employed for more and more purposes as more attention was paid to minimizing 

repetition of computation. Because of this, it is worth describing the implementation in 

some detail. The basic problem is to take a key (a variable or an expression), a data base 

name (property name), and a context, and logically search backwards toward the root 

looking for the first context in which there is an entry (or cancellation, i.e., deliberate 

non-entry) for that key in that data base. For example, in the clause data base the keys 

are the clauses themselves and the associated value is a flag indicating the presence and 

origin of the clause. PIVOT first takes the key and looks it up in a hash table (the 

mechanism required to make this work for expressions is described in Chapter V). The 

corresponding "value" is a list of entries of the form (context . value), sorted in such a 

way that if the context Cl is an ancestor of C2, then the entry for Cl appears on the list 

after that for C2 if both are present. Cancellations are denoted by value=NIL. Now if C 

is the context for which the value is desired, it is only necessary to search down this list 

until one encounters an entry where the context component is an ancestor of C (i.e., a 

"tail" of C in the sense that (2 1) is a tail of (3 2 1)). Since a given expression is likely 

only to have an entry in a few contexts, the search is likely to be short: a run of PIVOT 

on a substantial program gave an average of 3.98 entries examined per successful lookup, 

and 2.44 per unsuccessful lookup. 
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Theorem generator 

PIVOT's theorem generation process works on one path at a time: as it passes through each 

statement, it calls a routine associated with the statement type (ASSERT, IF, assignment, 

etc.). The semantics associated with the different statement types are as follows: 

Type Effect 

Assignment 
Evaluate the right-hand side, and any subscripts on the 
left-hand side. Record the assignment in the 
appropriate "value data base" (there are separate data 
bases for simple variables and for arrays). 

BEGIN, END, LOOP, EXIT, NEXT, ELSE, REPEAT 

IF, WHILE, ELSE IF 

LEMMA 

ASSERT, DECLARE 

ASSUME 

None. These statements only 
affect the flow of control. 

Evaluate the condition, and assert (add as a clause) 
either the condition or its negation, depending on a 
marker in the path description. 

Abandon the theorem generating process for this path. 

Evaluate the lemma. Create two new contexts 
underneath the current context. In one, assert the 
negation of the lemma (this context will be used to 
prove the lemma). In the other, assert the lemma; this 
context becomes the current context for the generation 
process for the remainder of the path. 

Evaluate the assertion. If at the beginning of a path, 
assert the assertion; otherwise (at the end of a path) 
create a new context underneath the current context and 
assert the negation of the assertion in this context, which 
will be used for proving the assertion. (Each goal 
assertion receives its own context so that the proofs will 
be independent.) 

Evaluate the assumption, and assert it. 
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Evaluate", in the context of the theorem generator, basically means "replace variables by 

assigned values, if any". The convention was chosen that variable names in clauses refer 

to the values of those variables at the beginning of the path, hence values are stored and 

clauses generated in those terms. For example, if the assignments X +- 2*X and X +- X-Y 

appear on a path, then the value recorded for X after the second assignment would be 

2*X-Y and an assertion to be proved that mentioned X would have the X replaced by 

2*X-Y. This approach also works for array elements, in the following more complex 

manner: whenever an assignment is made to an array element, the (evaluated) subscript 

and assigned value are placed at the head of a list associated with that array. When 

evaluating an array reference, A[k], PIVOT builds the internal equivalent of IF k=i1 

THEN v1 ELSE IF k=i 2 THEN v2 ... ELSE A[k], where the (ij,vj) are the subscript-value 

pairs associated with A. For example, consider a program which interchanges two 

elements of an array by 

W +- A[I], A[I] +- A[l-1], A[l-1] +- W. 

A later reference to A[J] would evaluate to the equivalent of 

IF J:l-1 THEN A[I] ELSE IF J=I THEN A[l-1] ELSE A[J], 

which is the correct expression in terms of the original contents of A. A reference to 

A[I] would evaluate to A[l-1], since 1=1-1 simplifies to "false" and l=I to "true". 

In addition to the capabilities discussed above, which are similar to those of King's 

theorem generator, PIVOT incorporates three improvements which have an enormous 

effect on its ability to deal with complex programs. These improvements deal respectively 

with equalities, induction, and case analysis. 

If PIVOT encounters an assertion or a test which evaluates to an equality which can be 

solved for a variable that has not yet been assigned to, PIVOT effectively treats the 

assertion as an assignment. For example, if ASSERT X:XO appears among the initial 

assertions on a path, it is treated like X +- XO. (The clause X=XO is also put into the data 

base in case X or XO is actually assigned to later in the path, or in case references to X 

have already occurred in earlier assertions.) This occasionally allows simplifications to 
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take place during theorem generation that otherwise would have to wait for the theorem 

proving phase, in which a scan of the theorem notices the equality and performs the 

substitution. A similar and much more important action occurs for assertions of the form 

.FA(J:p(J))(A[J]=g(J)), 

which specify the values of some range of elements of an array. Such assertions are put 

on the assignment list for the array A and considered just like assignments to specific 

elements: they produce tests of the form IF p(k) THEN g(k) when forming the conditional 

expression for a reference to A[k]. Of course, the same result could be obtained by 

making the correct instance of the assertion during the theorem proving phase (by 

paramodulation [Rob3]). but this approach produces the same result more directly. The 

most striking application of this technique occurs in Appendix B, where the proof would 

have been completely unmanageable without it. 

The assertion which cuts a loop is frequently of the form .FA(J:r(J))(p(J)). where r (the 

range) is some simple relation involving a loop variable (one that changes in a simple 

way) and p does not involve loop variables directly. In such cases, it is advantageous to 

divide the proof of the evaluated assertion into two parts: one part deals with that part of 

the new range of J which overlaps the old, and one part which deals with the new 

elements. For example, if r(J) is something of the form M<J<N and N is replaced by 

N+l in the loop, then the overlapping part of the range is M<J<N and the new part is 

J=N (N meaning, as usual, the original value of N). PIVOT actually uses this 

range-splitting technique whenever the same assertion of the form just mentioned occurs 

at both the beginning and end of a path: this typically results from a loop, but it may 

result from a DECLARE. Letting r' be the evaluated form of r (M<J<N+l ·in the 

example) and p' of p, PIVOT converts the goal 

.FA(J:r'(J))(p'(J)) 

into the two goals 

.FA(J:r'(J);\ r(J);\ p(J) )(p'(J)) 

and 

.FA(J:r'(J);\-r(J))(p'(J)). 
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The reason for including p(J) in the first goal is that it is known to be true (if it is true 

for all J satisfying r, then it is certainly true for all J satisfying both r and r') and it 

makes it more likely that the body of the quantifier will simplify to "true". (This is just a 

short-cut: the theorem prover could deduce p(J) on its own.) Furthermore, p is evaluated 

to produce p' in a new context in which one of r'/\r or r'/\-r has already been asserted, so 

that the deduction process described in the next chapter can operate more powerfully in 

simplifying array references. For example, in the case where a loop variable is being 

incremented and an assignment is being made to an array element, it is likely that there is 

enough information in the assertions cutting the loop to determine whether the subscript 

falls in r'/\r or in r'/\-r; this allows elimination of the conditional expression which 

would otherwise have to be generated for array references in the goal, since one of the two 

tests will evaluate to "true" via the deduction process described in the next chapter and the 

other will evaluate to "false". The proofs for King's Example 6, Appendix A, illustrate the 

value of this strategy. 

The range-splitting technique just discussed helps reduce the incidence of conditional 

expressions generated to cope with assignments to array elements, but in fact PIVOT does 

not tolerate their intrusion into evaluated expressions at all. When such an expression 

actually results from evaluating an array reference, PIVOT aborts the evaluation process, 

creates as many new contexts as there are alternatives in the conditional expression, asserts 

the respective predicates of the conditional in the new contexts, and starts the evaluation 

over in all the new contexts "in parallel". For example, in the situation where there is an 

assignment to A[I] and there is a later reference to A[J] where it cannot be resolved 

whether J:I, PIVOT creates two subcontexts of the current context, asserting J=I in one 

and J:;t: I in the other, and starts over. This time, the difficulty does not arise, since in one 

of the two it is known that J:I and in the other, that J:;t: I. It is true that this approach 

leads to some proliferation of contexts. The alternative, a proliferation of conditional 

expressions, is worse since the conditional expression must undergo substantial 

reprocessing each time a new operator is applied to it, i.e., f(IF p THEN e ELSE e') 

becoming IF p THEN f(e) ELSE f(e'). Furthermore, in the not unlikely event that there 

is more than one reference with the same subscript, the context splitting only happens 
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once, and future occurrences of the same subscript are resolved without further difficulty, 

whereas a new conditional expression must be generated for each reference in the other 

approach. Finally, case splitting leads to simpler theorems, and the effort required to 

prove a theorem tends to rise faster than linearly with the complexity of the theorem. 

Appendix B, the Constable-Gries pair-enumeration program, illustrates the advantages of 

this approach. 

Theorem prover 

The PIVOT theorem prover takes a data base containing clauses and tries a series of 

transformations on it in an attempt to produce a contradiction. There is a fixed list of 

transformations (procedures) to try: when a procedure succeeds, the prover starts over at 

the top of the list; if the list is exhausted before a contradiction is attained, the theorem 

prover gives up. In this respect PIVOT's theorem prover is just like King's. Most of the 

added theorem-proving power comes from one new procedure which makes instances of 

quantifiers, and from the deduction mechanism described in the next chapter which is not 

part of the theorem prover at all. 

The theorem prover first collects all equalities which allow elimination of variables. Then 

it removes the equalities and substitutes the values for the variables in all other clauses. 

Even though equalities entered by the theorem generator are also used for substitution 

during theorem generation, there may have been references to the substituted variables (I 

if l:J is entered) before the equality was reached, and the theorem prover eliminates 

these. In some sense this procedure is a special case of paramodulation; it is useful 

because it actually decreases the number of clauses in the theorem. 

The next procedure is to take in turn each clause which is a disjunction and truth-valuate 

each disjunct with respect to the remaining clauses by the techniques described in the next 

chapter. If any disjunct becomes "true", the clause is dropped; if a disjunct becomes 

"false", the disjunct is dropped. This procedure essentially extends to disjunctions the 
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automatic truth-valuation procedure for non-disjunctions: if x::s;y is a clause and x>y is 

asserted, a contradiction is detected, whereas if x<y ! x<z is a clause and x>y is asserted, 

the disjunction is not replaced by x<z. Its main utility arises in proofs by cases, where 

there may be important consequences of the newly asserted disjunct (i.e., p being asserted 

in place of p!q). 

If disjunction valuation fails to produce progress, the prover tries a weak form of 

resolution called quantifier instantiation, which adds clauses obtained by substituting 

expressions for bound variables in universally quantified (.FA) clauses. The basis of this 

procedure is a pattern matcher which takes a form (part of a quantified assertion), an 

expression to match against the form, and a list of bound variables in the form which may 

match anything in the expression. The pattern matcher produces all possible matches, each 

match being a list of assignments of subexpressions to bound variables and a score which 

tries to measure the "relevance" of the match. The score is computed as follows: the first 

match of a bound variable against an expression subtracts the number of cells in the 

expression from the score, on the grounds that simpler matches are more likely to yield 

useful results; successive matches of the same bound variable do not alter the score; a 

match of any other variable against the same variable in the expression adds 10 to the 

score, on the grounds that this is a good measure of relevance. (This scoring algorithm is 

somewhat adhoc, but seems to produce high scores for good matches, i.e., those that yield 

instances which contribute to the eventual success of the proof.) The matching procedure 

itself is straightforward, with one exception: if the form contains a subform x>c and the 

expression being matched is of the form y>d. the matcher only matches x against y 

(disregarding the constant term); if the form is x>c and the expression is y<d, the 

matcher tries x against -y. The rationale is that the matcher is only trying to produce 

good candidates for instantiation of universally quantified assertions, so the match doesn't 

have to be perfect. This "semantic matching" capability is unique with PIVOT and will 

probably be extended in the future. 
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The quantifier instantiation procedure cycles through the clauses which are universal 

quantifications, matching the range and the body of each against all other appropriate 

clauses. To reduce search time, for each operator (e.g., FA, >, !, etc.) there is a list of all 

clauses that have that operator as their outermost one: if the outermost operator of a 

quantifier body is >, for example, it is only necessary to try matches against clauses whose 

outermost operator is ~ or ::;. After all possible matches have been collected, the matches 

are sorted by score. Each score is biased by 5 times the depth of the test clause in the 

context tree, on the grounds that more specialized clauses (e.g., goals as opposed to 

assertions) are somewhat more promising candidates for a quick contradiction. 

Furthermore, matches against the range (as opposed to the body) are biased by -200, on 

the grounds that body matches are more specific in some sense: a range of the form 

1:$J<N, for example, will produce a match with any assertion of the form x~c, leading to 

many probably irrelevant matches. Starting with the best match, the appropriate instance 

of the quantifier is asserted. For example, if the clauses 

.FA(J:l <J<N)A[J]<A[M] 

and 

A[l-l]>A[M] 

are present, then the clause 

1-1<1 ! 1-l>N 

would be added since the first clause is actually 

.FA(J)(J<l ! J> N ! A[J]:$A[M]). 

If this instance has a valuation of "true", i.e., is a consequence of existing clauses, then the 

next best match is tried: instances of this sort frequently have already been asserted as 

negations of goal assertions. The prover also will not consider any match with a score 

below -100, which prevents the avalanche of bad instances which often overwhelms such 

theorem provers. 
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If there are no sufficiently good matches, the prover looks for a clause of the form f(a1 •.. 

an)*f(b1 ... bn) (e.g., A[l]*A[J]), constructs a subcontext in which the clause is replaced 

by a1*b1! ... !an*bn (e.g., l*J), and tries to produce a contradiction in this subcontext, i.e., 

this is a recursive call of the prover. The rationale is that the inequality on the arguments 

is a weaker condition, and is worth trying even though the theorem is stronger than the 

original and may be false (not contradictory) even if the original is true (contradictory). 

This function removal procedure is of marginal utility and may be removed in the future, 

although it was the deciding factor in one or two proofs. Function removal is also 

attempted on clauses of the form 

.FA( ... )f( ... )*f( ... ), 

where the removal is done inside the body of the quantifier. 

The next procedure to be tried is proof by cases. The prover selects a clause 

which is a disjunction, c1! ... !en, and creates two new contexts: in one of them it asserts c1, 

in the other -c1A(c2! ... !en). It then tries to produce a proof in both contexts, 

independently. Since this procedure can lead to a proliferation of subproofs, it is only 

tried on clauses whose "size" (number of list cells occupied) is less than 40, on the 

heuristic suspicion that simpler clauses impose stronger conditions on the theorem and are 

more likely to produce a contradiction quickly. 

If there are no suitable disjunctions, PIVOT tries quantifier instantiation again with a 

threshold of -500. If this fails, it tries proof by cases with no limit on the clause size. 

This two-pass scheme seems to work very well in terms of preventing proofs from getting 

sidetracked by premature proliferation of instances or cases. 

If all these procedures fail, the prover tries a desperation measure: it searches for any 

clause containing certain operators (division, MOD) and replaces the operators by their 

definition. Division, for example, is defined by x/y="q such that x=q*y+r· where O<r<y" 

for positive y and analogously for negative y. The rationale for this procedure is that 

PIVOT's direct knowledge of these operators is somewhat limited, and there may be some 
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value in converting them to operators which PIVOT knows more about such as addition 

and multiplication. 

There is actually a flaw in the prover design on which the reader will probably have 

remarked already: whenever progress is made, the prover starts over at the first procedure. 

This means, for example, that quantifier instantiation will be tried many, many times on 

the same clauses, since there is no mechanism for preventing it. It turns out that this is 

the only case which really causes trouble, since the other procedures are quite cheap to try 

when they are not applicable. This problem has been circumvented (but not solved) by 

storing, rather than recomputing, the results of past matches. While the control 

mechanisms in more recent systems such as Planner [Hew3], Conniver [Sus3], and QA4 

allow more selective invocation of proof procedures, it is not clear that they allow easy 

construction of the organization used by PIVOT, which has the advantage that the 

procedure most likely to produce valuable results (if applicable at all) is always tried first. 

It is interesting to observe that the present configuration of the PIVOT prover is a result 

of early hand-simulations and also of experience gained from interactive testing and 

tracing. In this area, at least, the ability to stop, step, and monitor the dynamic progress 

of proofs interactively has proved extremely valuable. 

Those accustomed to the orderliness of resolution theorem provers will probably feel that 

PIVOT's theorem prover is a hodge-podge. In fact, the theorem prover plays a minor role 

in the verification process, and is not meant to be particularly powerful. Almost all of 

PIVOT's power comes from the constant and economical use of the truth-valuation 

process of chapter IV. (This was not the author's original intention: the early vers"ion of 

PIVOT relied heavily on the theorem prover.) The prover's relative lack of generality may 

impede PIVOT's application to arbitrary semantic domains, but the very fact that prover 

power is not required for the specific domain supports the author's contention that there 

are other powerful ways of integrating domain-dependent knowledge into a verification 

system. 
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DEDUCTION 

Data base overview 

PIVOT's functioning revolves around two separate groups of data bases. One group 

records assignments of values to scalar variables, array elements, and functions, and is only 

used during the theorem generation phase. The role of this group was discussed indirectly 

in the earlier section on theorem generation. The other group records clauses (predicates 

asserted or determined to be true in a particular context) and is used during both theorem 

generation and proof. Both groups are organized according to the context structure 

described in the previous chapter. 

Just as LISP property lists follows the general paradigm 

(GETP object property) = value, 

where "object" is a symbolic atom, "property" is a property name (another atom), and 

"value" is any LISP datum, so PIVOT data bases follow the paradigm 

(G ETX object property context) = value, 

where "object" is a variable or an expression, "property" is the data base name (an atom), 

"context" is a context name, and "value" is some LISP datum whose nature varies from one 

data base to another but which usually also involves expressions. (For example, in the 

data base that records assignments to array elements, the "value" is essentially a ·list of 

subscript/assigned value pairs; the subscripts and assigned values are expressions.) 

For consistency, variable names in all expressions in all data bases refer uniformly to the 

values of the program variables at the beginning of the relevant path. This implies that 

whenever the theorem generator is about to process an expression, it must subject it to an 

evaluation process which replaces all variables with assigned values by those values, 

expressed in terms of the values which the variables had originally. 
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Value data bases 

PIVOT uses the "value" group of data bases to record assignments of values to names: 

these data bases are the source of information required by the evaluation (value 

substitution) process of the theorem generator. There are three data bases, corresponding 

to the three kinds of named objects that can appear in PIVOT programs: 

Name Mnemonic Function 

CVAL Current VALue Associates values with 
scalar variables. 

ELLIST Element LIST Associates values with 
array elements. 

SFDEF Special Function Associates definitions 
DEFinition with functions. 

(Program modules, which are another kind of named object, are kept track of using LISP 

property lists in a much more mundane manner.) 

As PIVOT moves forward along a path during theorem generation, there are two events 

that can lead to recording an assignment of a value to a scalar variable. One, of course, is 

an assignment statement. The other is an assertion of equality, either through an ASSERT 

statement or an IF test, e.g., ASSERT l=IO or the "true" path through IF l=IO THEN ... An 

assignment statement leads to a new value being entered in CVAL under the variable name 

being assigned to. Since a variable can only have one CVAL at a time on a· given path, an 

equality only leads to a CY AL entry if none exists for the variable already; also, an 

equality does not produce a CY AL entry if the assigned value would be too complicated 

(not a linear combination of variables), on the grounds that there is a good chance that 

subsequent events may lead to a simplification before the substitution is made by the 

theorem prover. (Equalities are recorded as clauses, and will therefore be seen by the 

theorem prover, even if no CY AL entry is made: the CY AL entry just makes the 

substitutions earlier, in the hope that simplification will result.) 
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CVAL provides a nice example of the usefulness of the context tree in theorem 

generation. Consider the program fragment in figure IV-1. The assignment statement 200 

is "seen" in all three subsidiary contexts, and superseded independently in two while 

remaining unaltered in the third. 

The situation for array elements is more complicated. Besides assignments and asserted 

equalities, PIVOT takes note of quantified equalities, i.e., assertions of the form 

.FA(j:r(j))A[j]=f(j). (This process was described as part of the theorem generation phase.) 

If one views assignment to an array element as assignment of a new value to the entire 

array, one can imagine assigning values to many elements at once as well as making 

assertions about many elements at once. PIVOT does not actually provide a notation for 

such assignment to a partial array, although it could: the only widely used language with 

this ability is APL [lv4] [Ger4]. 

There are four kinds of defined functions in PIVOT. The first kind, procedure modules, 

receive their definitions as described in Chapter II. They are always treated as closed 

subroutines: a call to a procedure causes PIVOT to retrieve the initial and final assertions 

from the procedure definition and construct an appropriate theorem and assertion for the 

caller. The second kind is LET definitions. These have their definitions recorded in 

SFDEF during a preliminary scan over the procedure being analyzed, and calls to them are 

always replaced by the substituted definition during theorem generation. The third kind 

is built-in functions, currently MIN, MAX, ABS, and SIGN. The definitions of these are 

entered in SFDEF under context 1 (the root of the context tree) when PIVOT first 

initializes itself and are never altered; calls are again always replaced by the substituted 

definition. The fourth kind is the internal functions used for division and modulus 

(QUOTIENT and MOD): these are also defined permanently, but calls are only expanded 

as a last resort during the theorem proving phase. All definitions in SFDEF have the 

same form, namely 

(<dummy-variable-list> <defining-expression> <always-expand-flag>). 

If function definitions (LAMBDA expressions) were added to PIVOT at some later date, 
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then the values in SFDEF would be precisely such expressions together with an 

always-expand flag. 

There is an interesting parallel between arrays and functions which PIVOT may exploit at 

some future time. Arrays are generally assigned values element-by-element, or asserted to 

have certain values over a range of indices as a function of the index. Functions are 

generally assigned "closed forms" which given their values at all points, but some kinds of 

functions (such as absolute value) are more conveniently defined in disjoint ranges, and 

component selectors for records, which can be thought of as functions and in some 

languages are even written with function-call syntax, are usually assigned values one point 

at a time (i.e., one usually assigns a value to a component of only a single record at once). 

At the moment, PIVOT treats arrays and selectors identically, allowing pointwise or 

piecewise specification of values, and functions differently, requiring total specification. 

In the future it may be a desirable simplification to treat all three structures the same. 
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Program: 

200 x <- z 
210 IF X>O THEN X ~ X-1 
220 ELSE IF X<O THEN X <- X+l 
230 LEMMA Z=O ! X**2<Z**2 

A possible context tree, with clau5cs and CVJ\l. eritries: 

(7 6 2 1) 
7.1 Z>O 
CVAL(X)=Z-1 

(6 2 1) 
CVAL(X)=Z 

(8 c; 2 1) 
8.1 Z<O (i.e Z/0& Z<O) 

CVAL(X)=Z+l 

(9 6 2 1) 
9.1 Z=O (i.e Z/O& ZfO) 

The evaluation of the expression in statement 230, in each resulting context: 

(7 6 2 1) 
Z•O ! 2*Z-l>O 
(from Z=O = (Z-1) **2<Z**2 

(8 6 2 l) 
Z=O ! 2*Z+l<O 
(from Z=O ! (Z+l) ••2..:z••2) 

Fig. IV-1 

(9 6 2 1) 
z~o 

(from Z=O ! Z**2<Z**2) 

IV-5 
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Clause data bases 

PIVOT uses the "clause" group of data bases to record clauses, i.e. expressions which are 

deemed to be "true". The theorem generator places assertions and the outcomes of IF and 

WHILE tests in these data bases, and the negations of goal ASSERTs and LEMMAs; the 

theorem prover transforms the clauses in an effort to produce a contradiction. There are 

four clause data bases, each of which stores information about clauses in a different form: 

Name/Mnemonic Key/Value Function 

THCLAUSEP/ Clause/ Stores the clauses 
THeorem 
CLAUSE 

origin flag themselves 

C$1/ Oflerator/ Collects clauses with 
Coordinate 1 ist of the same outermost 

clauses operator 

RC$2/ Arithmetic Collects arithmetic 
Relation expression/ relations with the 
Coordinate 2 hst of same non-constant 

clauses part 

ULBL/ Variable or Stores < and > 
Upper-Lower arithmetic relations and tneir 
Bound List expression/ consequences 

coefficient 
triples 

Unlike the value data bases, where each data base stores a different kind of information, 

the clause data bases all store subsets of the same information, in different forms for 

different kinds of processing. 

The idea behind the clause data bases is that it is important to be able to make 

certain kinds of trivial deductions very cheaply, where "deduction" means "assignment of 

a truth-value to a logical expression". The most important application of this ability is in 

eliminating cases of subscript conflict, i.e., being able to deduce that J:;t:I in the situation 

where there has been an assignment to A[I] and there is a reference to A[J], but it also 
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has a very significant effect in preventing trivial theorems from ever reaching the 

somewhat ponderous machinery of the theorem prover. 

The simplest case in which an expression has an immediately determinable truth-value is 

when the expression, or its negation, is a clause: if the former, the truth-value is "true", if 

the latter. "false". Consequently, there is a data base (THCLAUSEP) in which the 

key-expressions are the clauses themselves and the values are basically irrelevant since they 

only serve to indicate that the clause is present. Thus if THCLAUSEP(e)* NIL, e's 

truth-value is "true"; if THCLAUSEP(-e):;e: NIL, e's truth-value is "false". (PIVOT 

actually does use the THCLAUSEP value, to distinguish between clauses put in as a result 

of ASSERT statements, clauses put in as negations of goals, and other clauses, since this 

information is useful when printing theorems for the user.) 

PIVOT extends the idea that an expression has a trivially deducible truth-value to a 

number of other situations. For example, if X>O is a clause, then X<O and X=-2 are both 

false. More generally, if e is any expression with no constant term, r and r' are relations 

(=, *· >. <. >. <),and c and c' are constants, there is a table which gives the truth-value 

of e r' c' given that e r c is a clause (figure IV-2). This observation (due to King) makes 

it advantageous to group together all clauses with the same e. RC$2(e) is just the list of all 

such clauses, and is consulted whenever it is desired to determine a truth-value for an 

expression e r' c'. 
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r' e=c' 

e=c 

el!:c 

c' c: T 

c' 'I c: F 

c' c: F 

c'<c: F 

c'>c: F 

c' -= c: F 

c' 1' c: T 

c' c: T 

c'<c: T 

c'>c: T 

e~c' 

c':S;c: T 

c'>c: F 

c'~c: T 

c' >c: F 

eSc' 

c'~c: T 

c'<c: F 

c'<c: F 

c'.c:c: T 

This table indicates under what conditions e r' c' has a 

deducible truth-value, given that er c is "true". 

(For integers, e>c is e~c+l and e<c is e~c-1). 

Fig. IV-2 

IV-8 
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A more complex situation arises when a deduction must be made from more than one 

relation, e.g., the deduction that X <Z is false when X> Y and Y> Z are known to be true. 

King's system used a procedure called the "linear solver" to determine satisfiability of a 

set of simultaneous linear inequalities. While the "linear solver" could make the type of 

deduction just illustrated, it would be slow and painful. PIVOT uses a more restricted but 

more efficient technique, which is original with the present author and requires a certain 

amount of algebraic justification. 

Consider a chain of relations, assumed to be true, of the form x1>x2+c1, •.• , xn_1>xn+cn-l• 

xn>cn• where the x's are variables and the e's constants. Suppose we want to determine 

whether this assumption fixes the truth-value of a single relation of the form 

SUM[i=l,n]atxi r c, where the a's and c are constants and r is any arithmetic relation. 

(The SUM notation is a concession to the lack of a summation symbol. Its presence in the 

paradigm form does not imply its presence in the PIVOT program language, e.g., xcx3<0 

is an example of the form.) The information contained in the chain of known relations 

can equally well be expressed as xi=xi+l+ci+di, where the d's are unknown non-negative 

quantities. With this representation, we have a direct representation of the x's in terms of 

the e's and d's: 

xi=SUM[j=i,n]cj+dj. 

By substituting this expression into the relation under investigation, we can rewrite this 

relation as: 

SUM[i=l,n]SUM[j=i,n]at(cj+dj) r c. 

We now break the left side of the relation into constant and non-constant parts, and 

interchange the order of summation in the latter (these operations are legal since the sums 

are finite): 

(SUM[i=l,n]SUM[j=i,n]ai*cj)+ 

(SUM[j=l,n]SUM[i=lj]atdj) r c. 

Now let us compute two sets of cumulative coefficients: 
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bj=SUM[i=lj]ai for j=l, ...• n; 

ei=SUM[j=i,n]cj for i=l. n, 

and rewrite the relation again: 

(SUM[i=l,n]atei)+(SUM(j=l,n]bj*dj) r c. 

IV-10 

By moving the first term on the left to the other side, we finally reduce the test relation to 

the form 

s r k, where 

s=SUM[j=l,n]b/dj• and 

k=c-SUM[i=l,n]atei. 

Note that k is a constant computed from the asserted relation chain and the test relation, 

and s is a linear sum of non-negative unknown quantities whose coefficients are likewise 

computable. The truth-value of s r k is the same as that of the test relation, in the sense 

that if it has a determined, identical truth-value for ~.Y~D' assignment of non-negative 

values to the d's, the test relation necessarily has that truth value. The situations in which 

s r k has a unique truth-value are easily discovered to be those in the following table: 

r s r k true if s r k false if 

= All b's=O and k=O All b's>O and k<O. or 
all b's$0 and k>O 

> All b's~O and k50 All b's<O and k>O 

< All b'ssO and k~O All b's>O and k<O 

The entries for the remaining relations are filled in by observing that s>k is true precisely 

when ssk is false, and so on. 

An example may clarify the testing procedure which the foregoing analysis justifies. 

Suppose we know that U>V. V>W (or equivalently V~W+l), and W>O. and we wish to 
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determine a truth-value for U-V+W>O by the method just described. This situation fits 

into the paradigm as follows: 

Xl u al 1 el 1 k 0 
X2 v a2 -1 e2 1 
X3 w 83 1 el 0 
cl 0 c 0 bl 1 
C2 1 b2 0 
C3 0 bl 1 

All b's are ~O. and k<O, so the table says the test relation is necessarily true. 

PIVOT actually implements the algorithm of the preceding paragraphs quite directly. The 

asserted relation chains are maintained in the ULBL data base: ULBL(x) is a list of 

elements of the form (y m e . I), where y is another variable in the chain, m is the 

difference between y's subscript and x's, e is the sum of all the intervening e's, and I is a 

list of all the clauses that contributed to this entry (required for trace output and to make 

deletion of clauses remove ULBL entries properly). By convention, the last relation in the 

chain is represented by a fictional variable "O". Thus the ULBL entries for the 

three-variable chain N>J, J> I, l>O might appear as follows: 

x 

N 

J 

0 

ULBL(x) 

«/, 12 11 ~.)) J> I) 
(0 3 2 N>J 15( l>O)) 

((N -1 -1 N>J) 
(I 1 0 J> I) 
(0 2 1 15( I>O)) 

((N -2 -1 N>J J>I) 
(J -1 0 J>I) -
(0 1 1 I>lJ)) 

((N -3 -2 N>J J> I I>O) 
(J -2 -1 J> I I>"U) 
(I -1 -1 150)) 
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(The fact that the space and updating time for ULBL are proportional to the square of the 

number of entries in the chain does not appear to be a practical problem: the longest chain 

observed in the test cases had 5 links, and most had only 2 or 3.) When a new relation of 

the form x~y+c is asserted, all the ULBL's in the chain must be updated. Testing a 

relation is straightforward: the terms must be sorted by subscript first, then the method 

applied directly. There are two slight complications. One is that if the last relation in the 

chain (of the form x2'.:c) is missing, it is still possible to make deductions if the 

coefficient of en in the expression for k is zero, i.e., if the sum of all the a's is zero. The 

other is that it is necessary to verify that the variables in the test relation actually fall in a 

single chain, since this information is not represented explicitly in ULBL and would be 

very messy to update if it were: PIVOT handles this by brute force, namely checking, for 

each xi that appears in the test relation, that each xj has an entry on ULBL(xi) for all j)i. 

This procedure is costly in principle, but the vast majority of test relations only have two 

variables and thus require only one check. Finally, the ULBL computation does not come 

into play at all for relations e r c where RC$2(e) can provide a truth-value. 

The foregoing discussion should make it clear that PIVOT's clause storage mechanisms are 

designed to make querying cheap at the expense of updating time. In fact, the truth-value 

testing process is so cheap that it is actually applied to every logical expression as soon as 

it is constructed, and still only accounts for 15% of the CPU time. This approach has two 

advantages over delaying all deduction until theorem generation is completed. First, it 

performs semantically conditioned simplification as early as possible, which helps hold 

down the size of intermediate expressions and the number of cases which must be 

considered. Second, it leads to automatic analyses which bear a much stronger 

resemblance to human proofs than those of King or Slagle and Norton [Sla4]. This idea 

of continuous consultation of a data base which is in some sense "active" rather than 

"passive" pervades a good deal of current work in artificial intelligence; its application to 

PIVOT has grown out of experience and experimentation, and has more than justified the 

effort spent 
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REPRESENTATION AND SIMPLIFICATION 

Expression overview 

Like King's system, PIVOT represents expressions internally in a simplified canonical 

form. Each operator has an associated routine which is responsible for producing the 

canonical expression resulting from applying that operator to operands, e.g., there is a 

routine MKPLUS which takes a list of expressions and produces their canonical sum. This 

organization reduces the size of intermediate expressions (an important factor since a 

good deal of the processing involves scans over entire expressions) and, since most 

simplifications are inherently local anyway, provides an inexpensive unifying framework 

within which new operators and their associated simplification rules can easily be added. 

Restricting the variety of forms for the same expression can also cut processing time: for 

example, keeping the terms of a sum sorted reduces the time to add two existing sums (of 

m and n terms) and combine like terms from O(m*n) to O(m+n). It is worth noting that 

these operator routines, particularly those for addition, multiplication, and logical 

connectives, were a major speed bottleneck in the early versions of PIVOT and had to be 

rewritten: in the process, they were tuned for the relatively simple expressions that form 

the great majority of those actually encountered in proofs. 

PIVOT, unlike King's system, relies heavily on the ability to store and retrieve properties 

of expressions, i.e., to use expressions as keys in tables. For example, computing the 

negation of a logical expression is a frequent and moderately time-consuming operation: it 

would be convenient to compute the negation only once, store it in a table, and then look 

it up when it was needed thereafter. A problem arises from the fact that hash tables 

[Mor5], which afford the most rapid lookup procedure, require a fast mapping of the key 

into a small range of integers. Doing this for an expression, in the absence of any other 

strategem, requires examining the entire expression, if not to compute the hash code, at 
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least to compare the expression to the key in the table. However, if means can be found 

to ensure that each expression actually only appears once in storage, then the location of 

the expression can be used as the key and lookup can be extremely fast. It appears that the 

extra time required to ensure this property using PIVOT's technique (which is described in 

the next paragraph) is far outweighed by the reduction in space and the increased speed 

with which properties of expressions can be determined compared to more conventional 

methods. As Chapters Ill and IV make clear, the entire organization of PIVOT assumes 

that looking up expressions in tables is cheap. (The QA4 group uses a different technique 

called a ''discrimination net" to achieve similar ends; their application requires more 

general kinds of matching than strict identity when looking for a matching key.) 

The PIVOT technique for assuring expression uniqueness is similar to techniques used in 

compilers to detect common subexpressions. PIVOT expressions are LISP list structures, 

and all such structures are built up from two-component nodes (e.g., the head node of the 

expression (PLUS 3 X) has as components the symbol PLUS and a pointer to the sublist (3 

X)). so the problem reduces to ensuring that no two nodes exist with the identical 

components. PIVOT implements this with a function (HCONS cl c2) which constructs a 

new node with the given components if none exists, or returns the existing node if there is 

one. If c2 is NIL (the list terminator), HCONS looks up cl in a hash table, using the 

location as the key. (The locations of literal symbols like X are guaranteed to be unique 

by LISP.) The value found in the hash table is a node with the key as first component 

and NIL as second. If c2 is not NIL, it is looked up in a different hash table, where the 

value is a list of nodes with c2 as second component: this list is searched linearly for a 

node with the proper first component (cl). Thus, after constructing the list (PLUS 3 X), 

the NIL table would have the following entry: 

X: (X) 

and the non-NIL table would have these entries: 

(X): ((3 X)) 

(3 X): ((PLUS 3 X)) 
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All routines in PIVOT which construct expressions use HCONS, either directly, or to copy 

the expression before returning it, so all expressions are guaranteed unique representation. 

This hashing scheme was partly a result of the presence in BBN-LISP of a hashing 

function that only took a single pointer as the hash key, and the absence of any facilities 

for building a two-key hashing function: the latter would probably have been preferable 

to the scheme just described, although not greatly since the average length of the lists is 

only about 3 entries. 

Arithmetic expressions 

The syntax of internal arithmetic expressions appears in the figure below. Conditional 

and choice expressions will be discussed in the next section. Note that the internal syntax 

is quite a bit simpler than the external: for example, there is no subtraction operator. 

Note also that some simplification, such as combining constant terms, is implicit in the 

syntax. These syntax equations, and the others in this chapter, refer to LISP lists rather 

than strings of characters; in particular, parentheses ref er to list boundaries (as is 

customary in the external representation of LISP data). 

<arithmetic-expression> ::= (PLUS <num> <term> 
$<term>) I <num> I <term> 

<term> ::= (TIMES <num> <primary> $<primary>) 
<primary> 

<primary> ::= <id> I <conditional> I <choice> I 
(<function> $<arithmetic-expression>) 

<function> ::= EL I QUOTIENT I REMAINDER I IEXPT I 
<user-defined-function> 

Simplifications for addition include combining constant terms, combining other like 

terms (e.g., adding X and (TIMES 2 X) to produce (TIMES 3 X)), and eliminating terms 

that sum to zero. After simplification, to produce the canonical form the non-constant 

terms are sorted using an ordering which initially disregards constant factors, and places 

variables first, then other primaries. (This is the same as King's ordering: its advantages 
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over an arbitrary ordering based on, for example, the locations of their terms, are that it 

places variables and negatives of variables first, which is useful in determining whether an 

equality can be solved for a variable, and that it makes collecting like terms easy. It is not 

clear that these advantages outweigh the expense of sorting according to such a complex 

ordering.) If the final sum is just a constant or a variable, the canonical form is the 

constant or variable by itself rather than a PLUS expression. King's canonical form 

essentially keeps all expressions in the form (PLUS <num> $(TIMES <num> 

$<primary>)); the PIVOT form seems preferable since it conserves space in expressions 

not involving multiplication, but it admittedly complicates the operator routines for 

addition and multiplication. The decision to always have a constant term in a sum was a 

compromise with King's form. 

Simplifications for multiplication are essentially the same as those for addition: like 

factors are combined to produce exponentiation (IEXPT). Products of sums are 

multiplied out, e.g., multiplying (PLUS -1 X) by Y produces (PLUS 0 (TIMES -1 Y) 

(TIMES 1 X Y)). Although this occasionally produces larger expressions, it simplifies the 

internal syntax drastically. 

EL is the subscripting operator and has no speical simplification rules. Division 

recognizes xix=> 1, x/l=)x, and O/x=>O; if the denominator is a constant or a simple 

variable. and the denominator divides each term of the numerator, simplification also 

occurs. Exponentiation of a sum or a product to a constant power results in explicit 

multiplying-out; the only other transformations for the IEXPT operator are O**x=O, 

1 **x=l, and x**l=x. 

PIVOT currently has no provision for user-defined simplifications, but extending it to 

deal effectively with user-defined functions and domains will require such provision. The 

main problem is not how to express such rules but how to incorporate them into the 

program in an efficient manner. It is the author's opinion that this will involve 

user-defined canonical forms as well as some kind of efficient pattern detection 

mechanism; this question will receive further attention in the last chapter of this thesis. 
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Logical expressions 

The syntax of internal logical expressions appears below. Conditional and choice 

expressions are actually arithmetic expressions, but their processing and semantics are 

more closely related to those for logical expressions. 

<conditional> ::= (LCOND ${<logical-expression> 
<arithmetic-expression>}) 

<logical-expression> ::= <quantifier> I 
<disjunction> I <conjunction> 

<disjunction> ::= (OR <conjunction> <conjunction> 
$<conjunction>) I <logical-primary> . 

<conjunction> ::= (AND <disjunction> <disjunction> 
$<disjunction>) I < log1cal-pri rnary > 

<logical-primary> ::= <quantifier> I (<relationb-
symbol> <arithmetic-expression> <num>) 

<relation-symbol> ::= EQUAL I NEQUAL I LEQ I GEQ 

LCOND stands for "linear conditional" and represents an expression which may have 

different values depending on the truth of some condition or conditions. Unlike the 

familiar IF-THEN-ELSE of programming languages, however, the logical-expressions of a 

PIVOT conditional are always mutually exclusive, so that in principle their order is 

unimportant and they could be evaluated in parallel. (In fact, for canonicalization, the 

clauses are sorted on their logical-expressions.) (This format is called "linear" somewhat 

in the sense of "linearly independent".) Thus the ALGOL conditional expression IF pl 

THEN el ELSE IF p2 THEN e2 ELSE e3 would become (LCOND pl el p2/\-pl e2 

-p2/\-pl e3). In the early versions of PIVOT, the conditional expression did have 

sequential (ALGOL-like) semantics, but it turned out that this was ill-suited to processing 

by the LISP mapping functions and also that the linear (independent) conditions like 

p2/\-pl were usually what was wanted. 

Three kinds of simplification apply to conditionals. One is de-nesting: (LCOND pl el p2 

(LCOND p3 e3 p4 e4)) becomes (LCOND pl el p2/\p3 e3 p2:/\p4 e4). Another is 

removal: if any condition is NIL (false), that clause is removed, and if a condition is T 
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(true: this implies that all the others are NIL by exclusiveness), its associated expression 

becomes the value of the entire conditional. Another is merging of clauses with identical 

consequents: (LCOND pl el p2 e2 p3 el) becomes (LCOND pl Vp3 el p2 e2). A fourth 

transformation related to conditionals is carried out by a pre-processor that precedes every 

operator routine: if op is any arithmetic operator (PLUS, TIMES, EL, QUOTIENT, 

REMAINDER, IEXPT, or a user-defined function), then (op ... (LCOND pl el ... pn en) 

... ) becomes (LCOND pl (op ... el ... ) ... pn (op ... en ... )), i.e., the operator is pushed inside 

the conditional. (This procedure can lead to a proliferation of cases, for example if both 

terms of a sum involve conditionals, but PIVOT is sufficiently successful at avoiding 

conditionals through case analysis that this difficulty does not seem lo arise in practice.) 

In this way, the conditional eventually becomes an argument of a predicate (in the current 

PIVOT, always the first argument of arithmetic relation), where it undergoes a similar 

transformation and vanishes: (relation-symbol (LCOND pl el ... pn en) .num) becomes 

(OR (AND pl (relation-symbol el .num)) ... (AND pn (relation-symbol en .num))). 

King's system has all of these transformations except clause merging, but it is not clear 

from his thesis whether his conditionals are sequential or parallel. 

The alert reader will have remarked that there is no NOT operator in PIVOT. It happens 

that the negation of a canonical expression is always another canonical expression without 

needing a NOT operator: AND and OR become each other, likewise EQUAL and 

NEQUAL, LEQ and GEQ. (The last arises from the fact that for integers, -(x::Sy) = x>y 

= x~y+l.) In fact, the PIVOT internal expression syntax does allow for NOT, and there 

is a routine associated with it, in expectation of future additions such as user-defined 

predicates. 

Simplifications for AND include the obvious ones: (AND)=T, (AND x)=x, (AND x ... -x 

... )=NIL, (AND x ... x)=(AND x ... ), (AND (AND ... ) ... )=(AND ...... ). A less obvious set, 

discovered by King, results from the representation of arithmetic relations in the form 

(<relation-symbol> <arithmetic-expression> <num>). Any conjunction of relations of 

this form with the same <arithmetic-expression> can be simplified as follows: 
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(1) If any of the relations is an equality. then substitute the numeric value 

obtained from that relation into all the others: if they are all true, then the simplified 

conjunction is the equality alone, otherwise NIL (false). 

(2) If more than one of the relations is a LEQ, drop all such relations except the 

one with the smallest numeric part (e.g., x<3&x<5 simplifies to x<3). 

(3) Similarly, if more than one relation is a GEQ, drop all such relations except 

the one with the greatest numeric part. 

(4) If the upper and low bounds have crossed (e.g., x<2&x>4), the result is NIL. 

If they are equal, replace them by an equality and do case I. 

(5) Otherwise, the remaining relations are all inequalities. If any fall outside the 

range delimited by the upper and lower bounds, delete them .• If one falls on an endpoint. 

delete it and "tighten" the bound, e.g., x>4&x:;t:4 becomes x> 5. (This transformation 

relies on properties of the integers and is not applicable to real arithmetic in general.) 

This may produce a crossover or equality as in case 4. PIVOT actually carries out this 

process whenever it forms a conjunction that involves two or more arithmetic relations 

with the same first argument (non-constant part). 

The remaining transformation for AND arises when one of the conjuncts is a disjunction. 

In this case, each disjunct is compared against every simple conjunct to see whether it is 

either incompatible with that conjunct, in which case the disjunct is eliminated (e.g., 

x~3&(x~y!x~5) becomes x<3&x~y), or implies that conjunct in which case the entire 

disjunction is eliminated (e.g., x<2&(x2:'.:y!x~3) becomes x~2). The simplifications for 

OR are exactly analogous to those for AND. 
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Simplifications for arithmetic relations are those of King (dividing out constant factors, 

and recognizing that certain equalities like 4x+2y=3 have no integer solutions), and two 

more. One is conversion of x/k2:: n to x~ k*n, where k and n are integers, k positive. The 

other is conversion of x*y=O to x=O!y=O, where at least one of x and y is not a sum 

(PIVOT's factoring abilities are rather weak). 

This long list of simplifications may seem haphazard, but it was extended from King's list 

by hand-proof of several complex examples, and every simplification in PIVOT receives 

sufficient use to warrant retaining it in view of the fact that the same result often cannot 

be obtained without it. The list is certainly not "complete" in the formal sense of the 

term; the author believes that this is not a very important criterion for judging the merits 

of such systems. This question is discussed at length in Chapter VII. 

Quantifiers 

<choice> ::= (CHOICE <bound-variable-list> 
<logical-expression> <arithmetic-expression>) 

<quantifier> ::= 

~ FA <bound-variable-list> <domain> <disjunction>) I 
EX <bound-variable-list> <domain> <conjunction>) I 

_FU <bound-variable-list> <logical-expression> 
<logical-expression>) 

<bound-variable-list> ::= (BV <id> $<id>) 

<domain> ::= <conjunction> I T 

Quantifier simplifications will be discussed in terms of FA (universal quantifier) although 

EX (existential quantifier) is treated exactly the same way. PIVOT tries to divide the 

expression in the range of a quantifier into a "domain" and a "body" for purposes of 

simplification and as an eventual guide to forming instances of universally quantified 
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assertions. (This representation is motivated by the frequent occurrence in program 

proofs of quantifiers which describe properties of intervals or subarrays.) If the body of a 

FA is c1!c2!...!cn, then ci is a "domain predicate" if it is of the form v*e, v~e. or v<e 

where v is a bound variable and e is any expression not involving v (but possibly 

involving other bound variables). The negated disjunction of all domain predicates 

becomes the domain and the disjunction of the remaining cj becomes the body, using the 

equivalence of tl)e three expressions: 

(Vx:p(x))(q(x)), 

(V x)(p(x):Jq(x)), 

(V x)(-p(x) V q(x)). 

If any domain predicate is an equality (inequality before negating), e is substituted for v 

throughout the domain and the body and v is deleted from the list of bound variables. If 

the body reduces to a logical constant b (T or NIL), then the entire quantifier expression 

is a constant whose value depends on the type of quantifier and whether there are any 

values of the bound variables that satisfy the domain expression, according to the 

following table: 

FA 

EX 

sat. 

b 

b 

unsat. 

T 

NIL 

A simpler version of King's "linear solver" suffices to determine whether the domain is 

satisfiable: since all relations are of the form v~e or v<e. PIVOT eliminates one variable 

at a time by replacing 

v>e1& ... &v>em&v<e'1& ... &v<e'n 

by 

e' 1 ~el & ... &e' 1>em&e'2> el & ... &e' n> em 

and leaving relations not involving v unchanged. If a logical contradiction arises, the 

domain is unsatisfiable; if PIVOT is able to eliminate all the variables without producing a 
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contradiction (which may not happen if some of the e's are more complicated than linear 

combinations of the variables), then the domain is satisfiable; otherwise, the resulting set 

of conjuncts is partitioned into domain and body and PIVOT starts over. The idea of 

separating the domain from the body arose after experience with early versions of PIVOT 

indicated that this provided a good guide to what instantiations to try during the 

theorem-proving process (namely, those which made the body identical to the negation of 

a clause), and that there would be a significant efficiency gain from not having to negate 

the domain when negating a quantified expression, i.e., taking advantage of the fact that 

-(Vx:p(x))(q(x)) is (3x:p(x))(-q(x))). 

Unlike resolution-based systems, which move quantifiers to the outermost level, PIVOT 

moves quantifiers as far in as possible. This involves moving a FA inside an AND, 

moving a disjunct of an OR outside a quantifier if none of the bound variables occur in 

it, and one more complex transformation which was discovered in the course of trying out 

examples: converting (3x)(c/\(x=e ! d)) to c[e:x] !(3x)(c /\ d), where c[e:x] represents the 

result of substituting e for x in c. One obvious initial transformation, namely converting 

a body to conjunctive form for FA or disjunctive form for EX, is only carried out if such 

a transformation does not cause a size explosion (specifically, if it no more than doubles 

the length of the expression). 

There is a computationally expensive problem associated with converting an expression 

with bound variables to canonical form. One would like the canonical form to be 

independent of the names of the bound variables, so that e.g., (FA (BY X) (OR (P V) (P 

X))) and (FA (BV U) (OR (P U) (P V))) would have the same canonical representation. 

As this example shows, this is an extremely difficult task; in general, it involves finding a 

canonical form for an arbitrary labeled tree. PIVOT does not attempt to deal with this 

problem: the two expressions exhibited above are actually both in canonical form as far as 

PIVOT is concerned. 

The CHOICE function is an attempt to clear up a fuzzy area in King's definition of 

division. One would like to define x/y according to the Fundamental Theorem of 
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Arithmetic, i.e., "the q such that x=q*y+r where O<r<lyl". Leaving aside some 

complications introduced by the possibility of a negative denominator, King's definition 

was a conditional: "if q*y<x<(q+l)*y then q", where q was a newly-generated variable 

name. (For positive y, there is always a q that satisfies the condition.) Making q a new 

variable implicitly recognizes that q is local to this subexpression; this function is more 

properly provided by a bound variable. In fact, there are situations where this omission 

of an implicit quantifier produces errors. Consider the generic expression 

[l] .FA(x)(r(x) IMP p(x/2)) 

where I denotes integer division. King's system converts this to 

[2] .FA(x)(r(x) & (x=2*z ! x=2*z+l) IMP p(z)). 

Now in the specific case where r(a) is a>O and p(a) is a<O, [l] becomes 

[3] .FA(x)(x~O IMP x/2<0) 

which is obviously false. However, [2] becomes 

[ 4] .FA(x)(x>O & (x=2*z ! x=2*z+l) IMP z<O) 

which is false if the free variable z is ;:::o and true if z<O; since free variables in clauses 

are implicitly existentially quantified in both systems, [3] and [ 4] are not equivalent. 

The CHOICE operator solves this problem by explicitly indicating the presence of a 

bound variable: (CHOICE (BY x) (p x) (f x)) means "f applied to the x such that (p x)". 

Use of CHOICE is restricted to situations where there is precisely one value of x which 

satisfies p. The quotient x/y, for example, could be defined as (CHOICE (BY Q) 

Q*y_:5x<(Q+l)*y Q). In principle, CHOICE expressions require a transformation similar 

to the one for conditionals when used as an argument of a function: (f (CHOICE (BY x) 

exp x)) becomes (CHOICE (BY y) y=f(x)&exp y). It is to avoid this growth of expressions 

and repeated generation of new variables that CHOICE takes a third argument, to 

represent the computation to be done once the value has been found: the example would 

actually be represented as (CHOICE (BY x) exp (f x)). The only simplification applicable 

to CHOICE arises when the <logical-expression> contains a conjunct which is an equality 
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that can be solved for one of the bound variables. In this case, the variable is dropped 

and its derived value substituted for all free occurrences of the variable in the two 

expressions. If all variables are eliminated by this process, the CHOICE itself disappears 

and is replaced by the <arithmetic-expression>. 

When a CHOICE expression becomes the argument of a predicate, (r (CHOICE (BY x) (p 

x) (f x))), there are two plausible transformations to use to eliminate the CHOICE. One 

possible transformation produces 

[I] (Vx)(p(x)::Jr(f(x))): 

this requires r to hold for f off!!! x satisfying p, and is vacuously true if no such x exists. 

The other possibility is 

[2] (3x)(p(x) /\ r(f(x))), 

which only requires r to hold for §Qm~ such x, and is false if no such x exists. Since the 

use of CHOICE is restricted to situations where x is guaranteed to exist and be unique, the 

two forms are actually equivalent! To see this, consider the unique-existence condition 

[3] [3a] /\ [3b], where 

[3a] (3w)(p(w)) {existence} 

[3b] (Vy,z)(p(y) /\ p(z) ::J y=z) {uniqueness}. 

We want to show [I] & [3] => [2] and [2] & [3] => [I]. 

The first derivation: 

[I] /\ [3a] /\ [3b] => 

[I] /\ [3a] => 

[I] /\ p(~) {Skolem constant} => 

p(~) /\ r(f(~)) {Using ~ for x in [I]} => 

(3w)(p(w) /\ r(f(w))) {By example} => 

[2] {Alphabetic variant}. 
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The second derivation: 

[2] /\ [3a] /\ [3b] ==> 

[2] /\ [3b] ==> 

p(~) /\ r(f(~)) A [3b] {Skolem constant} ==> 

p(~) /\ r(f(~)) A (\fz)(p(z) ::> z=~) {Using x for y in [3b]}. ==> 

(\fz)(p(z) ::> r(f(z))) {Paramodulation} ==> 

[l] {Alphabetic variant}. 

V-13 

However, neither [l] nor [2] is an ideal translation. Consider what happens when a 

clause which originally contained a CHOICE is asserted as part of a theorem. If the 

quantifier resulting from the CHOICE is EX, it can be removed, and its variables replaced 

by Skolem constants; this is preferable to the FA case since the theorem prover is better 

equipped to deal with unquantified clauses. Whether EX or FA results at the clause level 

depends both on the original quantifier used to replace the CHOICE and on the number 

of times the subexpression is negated: neither EX nor FA a~ the original quantifier can 

guarantee EX at the clause level. Therefore, since we have just proved that we can use 

either EX or FA and produce logically equivalent expressions, we invent a new "hybrid" 

quantifier FU which has the desirable properties of both EX and FA: -(FU (BV x) (r x) 

(p x)) is (FU (BV x) (r x) -(p x)), and FU can be eliminated at the clause level like EX. 

This hybrid quantifier is unique to PIVOT and is the result of many frustrating attempts 

to understand the semantics of CHOICE. 

Source program 

Each statement in the source program is translated into an internal representation in two 

steps. The parsing program produces an expression which uses the same operators as the 

canonical form, plus a few more (e.g., UGREATERP for >), but is not actually in this 

form. This is then put into canonical form during a preliminary sweep over the program 
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before condition generation or verification is attempted. Both forms are saved with each 

statement, since the canonicalization of some expressions may depend on non-local 

semantic information (e.g., A(X) may be a function reference or a selection of a 

component from a record). For each type of source statement, there is an internal syntax, 

as follows: 

Source Internal 

ASSERT c1, •.. ,en (ASSERT (AND cl ... en)) 

LEMMA c1, •.. ,en (LEMMA (AND cl ... en)) 

ASSUME c1, •.• ,en (ASSUME (AND cl ... en)) 

IF c THEN BEGIN (BLKIF c) 

IF c THEN body (IF c body) 

BEGIN (BEGIN) 

LOOP (LOOP) 

WHILE c: BEGIN (BLK WHILE c) 

REPEAT: BEGIN (BLKREPEAT) 

WHILE c: body (WHILE c body) 

ELSE BEGIN (BLKELSE) 

ELSE IF c TH EN BEGIN (BLK ELSE IF c) 

ELSE IF c THEN body (ELSEIF c body) 

ELSE body (ELSE body) 

END (END) 

DECLARE c1, .•. ,en (DECLARE (AND cl ... en)) 

CANCEL label (CANCEL label) 

body (PROGN body) 

(EMPTY) 
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"Body" is one or more of the following (separated by ; in the source program): 

EXIT label 

NEXT label 

left-hand-side+- expression 

(EXIT label) 

(NEXT label) 

(SETQ left-hand-side expression) 

In addition to the source text, the two expressions, and the statement number, there is one 

other important property permanently saved with each source statement: the set of 

declarations required for that statement to be legal. The only such checks currently 

required are that the first argument of a subscripting operation is an array and that the 

arguments of a field selection written with "." are a pointer and an appropriate selector 

name respectively. 
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HUMAN INTERFACE 

Editing language 

Since PIVOT is an interactive system for construction and verification of programs, its 

input language actually has three distinct components. The language in which programs 

are written was discussed in Chapter II. The language used for routine editing, filing, etc. 

of programs is discussed in this section. The language used to control the verification 

process is described in the next section. The syntax of the editing language appears in the 

following table. 

<module-command> · · = 
PROCEDURE <module-name> <formal-parameters> I 
DECLARATIONS <module-name> <formal-parameters> 
IN <module-name> I 
WHERE I 
MODULES I 
SAVE <file-name> $<module-name> 
GET <file-name> 

<mod u 1 e- name> : : = <id> 

< f i1 e - name> : : = < i d > I <st r > 

<edit-command> : : = 
DELETE {MODULE <module-name> I <text-range>} ~ 
RENUMBER [<text-range>] [FROM <num> [BY <num> ] 11 
{COPY I MOVE} <text-range> TO <num> [BY <num> 
CHANGE <token> <token> <text-range> I 
LABEL <text-addr> [<id>] 

<text-range> ::= <text-addr> [- <text-addr>] 

<text-addr> : : = [: <module-name> : ] 
{<statement-number> I <search> 

<statement-number> : := <num> 
<search> : : = <str> [<offset>] 

<offset> : : = <num> 
<last-statement> : : = "$" 

<token> ::= <id> I <num> I <str> I <punc> 

<last-statement>} 

As mentioned in Chapter II, the program under PIVOT's scrutiny at any moment is a 

collection of modules, where each module may be a procedure or a declaration module. 
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Creation of a new module is accomplished by simply typing the module header, i.e., the 

PROCEDURE or DECLARATIONS command. This also makes the module "current": 

one module is current at any given time, and the current module is used as the default in a 

number of editing and control commands such as LIST and PROVE. The IN command 

sets the current module; WHERE prints the name of the current module. SAVE saves a 

list of modules, or all modules if no list is given, on a file; GET reads a file prepared by 

SAVE and prints the module headers as they are encountered. 

The editing language is similar to that of BASIC and not particularly original. However, 

it is important that an interactive system like PIVOT have good editing facilities that are 

oriented specifically to the manipulation of programs. Thus, for example, there is a 

special LABEL command to allow easy insertion or deletion of labels without having to 

retype the affected statement. Also, there are facilities which, though somewhat 

independent of both the particular command language and the functions it carries out, 

make an enormous difference in the "helpfulness" of the system as perceived by users. 

Two such facilities, namely the ability to undo commands already executed and the ability 

to misspell command names and still have them recognized, originated in BBN-LISP 

[Tei6] and are automatically available in PIVOT. UNDO (described in the BBN-LISP 

manual [Tei6a]) is limited to editing commands at present; automatic spelling correction 

is currently applicable to command names, and will be extended to statement keywords 

like ASSERT in the future. 

This crude command set is intended as the nucleus of a much more sophisticated system 

for filing, locating, cataloging, cross-referencing, and administering a library of program 

modules in various stages of being developed or verified, since the author feels that a 

"Programmer's Interactive Verification and Organizational Tool" will only be useful if it 

provides such facilities. Their development has not been a major component of the 

author's research up to this point, however. 
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Executive language 

The present executive (top-level) control language for PIVOT is rather simple. Its syntax 

follows: 

<control-command> · ·= 
<list-command> I 
STOP I 
PATHS ~<proc-name>] I 
TRACE <trace-code>] I 
PROVE <context-index> I <proc-or-path>] I 
!PROVE <context-index> 

<list-command> ::= 
LIST [<module-name> f <text-ran~e>] I 
TH [<context-index> . <clause-index>] I 

<proc-or-path> I 
EFFORT [<proc-name> I <context-index>] I 
JUSTIFY [<proc-name> I <context-index>] 

<proc-name> : : = <module-name> 

<path> ::= # <num> 

<context-index> : := <num> 

<clause-index> ::= <num> 

<proc-or-path> · ·= <proc-name> [path] I <path> 

<trace-code> : : = V I T I B I P I S I C I NIL 

Since PIVOT is embedded in BBN-LISP, it was deemed convenient to have a PIVOT 

command that sends control back to the LISP executive, namely STOP. Any input to 

PIVOT which does not begin with a PIVOT command word or a number (indicating a 

statement to be inserted in the current block) is also passed to LISP. The absence of this 

latter arrangement in the earliest versions of PIVOT caused great inconvenience, since it 

required constant transitions back and forth between PIVOT (trying new parts of the 

program) and LISP (fixing problems), and such transitions entailed losing some state 

information in the form of variable bindings. 

As described in Chapter II and illustrated in figure Vl-1, PIVOT's processing of a 

program is accomplished in a pipeline-like manner. To illustrate this process and the 

control commands, we will use King's Example 1: 
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100 ASSERT Y=B>=O 
110 x +- 0 
120 LOOP 
125 WHILE Y#O: BEGIN 
150 X +- X + A 
160 y +- y - 1 
170 ASSERT X=A*(B-Y) AND Y>=O 
190 END 
200 ASSERT X=A*B 

The PATHS command moves a given block, the current block if none is specified, through 

the Canonicalizer and the Path Generator, and prints a list of paths through the program. 

The output from our example is: 

#PATHS 
759 conses. 12. 404 seconds 
PATH #1: 170-190-120-125(Y#0)-150 ..• 170 
PATH #2: 170-190-120-125(Y=0_)-200 
PATH #3: 100 .•. 125(Y#0)-150 ..• 170 
PATH #4: 100 ••. 125(Y=0)-200 

The long computation time is mostly canonicalization: the path tracing process is very 

fast. Note that where a path goes through a decision statement (WHILE or IF), the 

outcome of the decision is printed as part of the path description. 

PIVOT offers several levels of trace printout for the Theorem Generator and the Theorem 

Prover. These are identified by the trace-codes given to the TRACE command. (TRACE 

alone prints the current trace-code.) NIL turns off all tracing. The other codes select 

various options regarding printing deductions, clauses, values, and entries into data bases. 

(The trace-code C, which only prints a record of context generation, was used for the 

sample output below.) Tracing uses the BBN-LISP "advice" facility, so tracing costs 

nothing when not being used. 
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The SETUP command moves the procedure through the Theorem Generator. If a path is 

specified, only that path is set up. (This is mainly useful for debugging, since PIVOT 

records which paths have been set up and does not repeat the theorem generating process 

if no statements on a path have been changed.) 

#SETUP 
0 conses, . 384 seconds 
Paths ready. 

(Since no edits have occurred, PIVOT does not recompute the canonical forms or the 
paths, but simply retrieves them.) 

PATH #1: 170-190-120-125(Y#0)-150 ... 170 
193 conses, 5. 928 seconds 
NIL 

(NIL indicates that the goal assertion at the end of this path, namely the evaluated form 
of statement 170, was deduced to be true by the Theorem Generator and therefore does 
not require use of the Theorem Prover. Normally the output would be a list of contexts 
which would have theorems set up in them for proof.) 

PATH #2: 170-190-120-125(Y=0)-200 
63 cons es, 1. 898 seconds 
NIL 

(Path #2 is not significantly simpler than path #1, but the work done in traversing 
statements 170, 190, and 120 does not have to be repeated. This accounts for the shorter 
time.) 

PATH #3: 100 ... 125(Y#0)-150 ..• 170 
185 cons es, 5. 354 seconds 
NIL 
PATH #4: 100 ... 125 ( Y[O )-200 
52 conses, 1. 916 seconds 
NIL 
Theorems ready. 

In this example, all the goals were deduced to be true during theorem generation. While 

this situation is uncommon, it is common even in complex programs for one-third or 

more of the goals not to require use of the theorem prover. 

The PROVE command allows selective invocation of the Theorem Prover on a procedure, 

a path, or a context. The reader is ref erred to Appendix D for an example of the output 

of this command. IPROVE (Interactive PROVE) is similar to PROVE; but allows detailed 

user control of the proof process, as described in the next section. The TH command lists 



Human Interface Vl-6 

either a single clause in a given context, given its number, or: all the clauses in a given 

context; all the contexts generated for proofs at the end of a given path; or a11 the contexts 

generated for a given procedure. 

In the example: 

#TH 

PATH #1: 170-190-120-125(Y#O )-150 ... 170 
No proofs 

and similarly for paths 2, 3, and 4. The reader is again referred to Appendix D for more 

interesting output. 

One of the interesting minor features of PIVOT, not mentioned in earlier chapters, is a 

certain amount of "introspection": with each context, PIVOT permanently retains the 

reason why that context was created and the amount of effort (time and CONSes) 

expended on the proof for that context if applicable. It is intended that PIVOT eventually 

use the knowledge, for example, that a given context was created for a user-supplied 

lemma, to prove the lemma before proving theorems which depend on the lemma, and ask 

the user for help if the proof of the lemma fails. At the moment, however, this 

information is retained only for the edification of the user. The JUSTIFY command 

prints the reasons for context generation, and the EFFORT command prints the effort 

expended on proofs. (The latter is not applicable to the small example: see Appendix D 

again.) 

#JUSTIFY 
(188/1) for procedure Kl 

(192/188) for paths beginning 100 ... 120 
(194/192) assuming false in 125 
(193/192) assuming true in 125 

(189/188) for paths beginning 170-190-120 
(191/189) assuming false in 125 
(190/189) assuming true in 125 

Note that, as mentioned before, PIVOT creates contexts for common initial segments of 

paths to avoid doing work twice. 
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Tnis command language represents the minimum that the author needed to provide for 

himself for effective development of the rest of PIVOT. More elaborate facilities for 

reviewing the course of a proof will be required for a useful system. Also, some 

mechanism must be provided for the user to try out actual numerical values over sections 

of a program or in theorems which could not be proved, in an attempt to find a 

counterexample. 

Proof control language 

In addition to the executive language, PIVOT incorporates a proof control language which 

allows the user to monitor and direct individual proofs at a detailed level. The syntax of 

this language follows. 

<proof-command> · ·= 
<list-command> I 
CASES <clause-name> I 
EXPAND <clause-name> I 
ADD <clause-expression> 
DELETE <clause-name> I 
INST <clause-name> <substitutions> I 
SET <substitutions> I 
MATCH <clause-name> <clause-name> I 
EVAL <clause-expression> I 
OK I STOP I NEXT I QUIT TEST 

<clause-name> : := <context-index> . <clause-index> 

<clause-expression> : := <q-relation> 

<substitutions> : : = <sub> ${, <sub>} 

<sub> : := <id> = <expression> 

A proof may be forced into the interactive, user-controlled mode in two ways: by 

initiating it with !PROVE rather than PROVE, or by typing an interrupt character 

(control-H) at any time during the proof. (The latter forces the proof into interactive 

mode the next time the prover completes an application of any of the transformation 

procedures listed in Chapter Ill.) The OK command causes PIVOT to revert to automatic 

mode. Other commands which affect the flow of control are NEXT, which causes PIVOT 

to do one step (make one transformation) and return control to the user; STOP, which 
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abandons the current subproof (of a proof by cases or function removal) and leaves the 

user in control at the next higher level; QUIT, which causes the entire proof to fail; and 

TEST, which creates a subproof (subcontext) so the user can experiment without fear. 

There are two command subsets which allow the user to affect the set of clauses which 

constitute the theorem. CASES initiates a proof by cases of a designated (disjunction) 

clause. EXPAND expands special functions (division and MOD) in a given clause. 

MATCH invokes quantifier matching, and asks the user which instantiations he wants 

asserted if there is more than one. These commands essentially force PIVOT to employ 
• 

specific theorem-proving techniques. The user can also intervene more directly, by using 

ADD to add a new clause, DELETE to remove an existing one, INST to add an instance 

of a quantified predicate, or SET to substitute values for variables throughout the 

theorem. He can also use EVAL to find the truth-value of a predicate without having to 

add it as a clause. 

While this proof control language is primitive and relatively new to PIVOT, it has already 

proved useful _in locating difficulties in particular proofs (not to mention bugs). It can 

also be used to help find counter-examples: to examine the consequences of setting X to 0, 

for example, one can use the command sequence: 

$TEST 
New (79/50) for testing 
$SET X=O 

If tracing is turned on, the user can see the transformations produced by the substitution 

of 0 for X. 
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Incremental aspects 

To be useful, an interactive system must respond quickly to typed input. PIVOT currently 

requires about 1.5 CPU seconds to process a ·statement to be stored. This figure will 

probably drop to Jess than .5 seconds when PIVOT is compiled -- currently most of 

PIVOT is run in interpretive mode for ease of modification. 

A more serious question is the speed and organization of PIVOT's computations. The 1.5 

second figure includes parsing and storage, but not transformation to canonical form or 

any further processing. The times for the other stages were measured on King's Example 

6, a modest program to move the greatest element of an array to the end by successive 

interchanges: 

100 
110 
200 
210 
300 
400 
410 
420 
430 
440 
450 
500 

ASSERT N>O 
I ~ 2 
LOOP 

WHILE I<=N: BEGIN 
IF A[I-l]>A[I] THEN BEGIN 

X ~ A[I]; A[I] ~ A[I-1]; 
END 

ASSERT . FA( 1<=$K<I )A( I J>[A(K] 
ASSERT I<=N 
I : = I +1 
END 

A[I-1] ~ X 

ASSERT . FA( 1<=$L<N )A[N]>[A[L] 

The paths through this program, as determined by PIVOT: 

PATH #1: 
PATH #2: 

420 ... 450-200-210(I<=N}-300(A[I]<A[I-1])-400 ... 430 
420 ... 450-200-210(I<=N)-300(A[IJ>=A[I-1])-420-430 

PATH #3: 
PATH #4: 
PATH #5: 

420 ... 450-200-210(I>N)-500 
100 ... 210(I<=N)-300(A[IJ<A[I-1])-400 ... 430 
100 ... 210(I<=N)-300(A[IJ>=A[I-1])-420-430 

PATH #6: 100 ... 210(I>N)-500 
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The timing results: 

Parsing: 6.2 seconds (Input from a file is 
faster than from the 

Canonicalization: 17.4 seconds 
Path generation: 4. 0 seconds 

terminal.) 

Theorem generation: 94.3 seconds, of which 
Evaluation: 23.5 seconds 
Entering clauses: 23.1 seconds 
Deduction: 15. 0 seconds 

Theorem proving: 11. 4 seconds 

Even though these times may diminish by a factor of 5 when PIVOT is compiled, they 

remain too high for repetition of the entire generation and proof process to be acceptable 

whenever a change is made in the program. For this reason, PIVOT is actually organized 

in a manner which minimizes repeated work. Each statement carries a flag to indicate 

whether it has been canonicalized; the flag is set when the canonicalization is done and 

reset when the statement is changed or first created. The paths produced by the Path 

Generator are expressed internally in terms of "path segments": the endpoints of a segment 

are groups of ASSERT statements, test statements (IFs or WHILEs), or the beginning or 

the end of the program. In the example, path #1 consists of three segments: 

420-430-440-450-200, 210(1<=N), and 300(A[l]<A[l-l])-400-410-420-430. Path #2 

also has three segments of which the first two are identical to the first two segments of 

path #1; path #3 has two segments, of which the first is the same as the first segment of 

path #1, and so on. Since PIVOT follows paths forward through the program, if a change 

is made in statement 400 only the last segment of paths #1 and #2 (and #4, as it 

happens) must be retraced by the theorem generator. Of course, the theorem prover must 

consider the resulting theorems de novo. This incremental organization did not save any 

time in debugging the examples in appendices B and D, which are rather complex loops 

with a single cluster of assertions, but it did save considerable time in the FIND program 

(Appendix E) from which statement 299 was originally omitted. 

The ability to avoid superfluous processing is especially critical in the mixed-initiative 

situation envisioned in Floyd's IFIP paper (Appendix C), where the computer is exp_ected 

to make comments on programs that are only partly specified. PIVOT allows for this type 
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of interaction in a modest way with a special " ... " statement, which is used to indicate that 

part of the program is missing and that theorem generation and proof should not be 

attempted for paths passing through that point. The analysis in Appendix C hopefully 

will persuade the reader that PIVOT is capable of carrying out the functions envisioned by 

Floyd; the proofs attached to the Appendix demonstrate that PIVOT possesses the 

necessary "intellectual" capabilities. 

A different need for interaction arises when PIVOT fails to complete a proof. There are 

at least five reasons why this might occur: 

(1) There is an error in the program being verified; 

(2) There is an error in the assertions; 

(3) PIVOT could 
interrupted it; 

have completed the proof, but the user grew impatient and 

(4) PIVOT lacks the necessary theorem-proving capabilities; 

(5) There is a bug in PIVOT itself. 

PIVOT should provide the user with at least the following capabilities for exploring the 

cause of failure: change the program, add assertions to the particular theorem and retry the 

proof, retry the proof with additional trace output, tell PIVOT that he knows the theorem 

is true and PIVOT should take his word for it, try some test cases with real values, add 

specialized theorem-proving capabilities to PIVOT's repertoire, etc. All of these facilities 

are planned for PIVOT, but only the first three are currently available. Adding 

theorem-proving capabilities will only be possible in the limited sense of specifying some 

properties (e.g., commutative-associative) and simplification rules for new operators, and 

transformations on clauses involving new predicates; the latter will require some 

knowledge of the internal workings of PIVOT's theorem prover. The author believes that 

much of the trouble that arises with general-purpose theorem provers is that they have too 

many options and not enough knowledge, i.e., too many possible transformations and not 

enough algorithms for deciding when to apply them, and that interactive direction and 

algorithmic extension will prove sufficient for solving most real problems. 
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CONCLUSIONS 

Accomplishments and failures 

The author feels he has significantly expanded the range of programs which are amenable 

to automatic verification. The examples in the appendices are more complex than those in 

King's thesis, or any other published work; the Constable-Gries program in Appendix B is 

actually a program of some subtlety. PIVOT has also successfully verified the other 

examples in King's thesis, with the exception of Example 10 which was devised specifically 

to exercise a routine for handling systems of linear inequalities which King's system 

incorporates and PIVOT does not. Preliminary analysis of an even more complex 

program, Floyd's TREESORTJ [Floyd?] [Lon7], indicates that PIVOT will be able to 

handle it after minor improvements. 

More important than PIVOT's successes is the manner in which they are achieved. 

PIVOT's proofs have a considerably more intuitive "feel" than King's, at least by this 

author's subjective standards. This was one of the major goals of the research. PIVOT is 

less inclined to suffer from combinatorial explosion on complex programs. King's 

Example 9 was presented in King's thesis missing a few critical assertions: King's program 

generated a few theorems of mind-boggling complexity and was unable to make any 

headway; PIVOT generated more theorems than with the correct assertions, but not many 

more, and reported failure to prove those (and only those) which were false. Considerably 

more care was taken in PIVOT to make its output comprehensible to the user: Appendix B 

provides an example. This extra care is the first step in making a smooth, helpful 

interactive system. 

There are two respects in which PIVOT has failed to attain the goals set for it by the 
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author. One is stability. Even though PIVOT is restricted to a fairly limited domain, each 

new test case has required adding simplification rules or extending the logic of PIVOT in 

some way. King apparently avoided this difficulty by ceasing development of his system 

when it reached a state capable of verifying a specific set of examples. However, the basic 

organization and methodology of PIVOT have not changed significantly in the past year, 

and the author hopes that the incremental incorporation of new techniques will gradually 

converge. 

The other area of partial failure is generality. The simplification rules and data 

representation are tightly bound into the program. The former could be made accessible 

to the user, but only at a great cost in speed. While the author believes that much of the 

power of PIVOT comes from this specific orientation to a single problem domain, this 

specialization compromises potential extension to other domains. One direction for 

future development of PIVOT which the author hopes to pursue is the addition of 

specialized routines for other domains, such as the list-structure domain being studied by 

Burstall [Bur?], and the investigation of techniques for harmonious cooperation between 

the specialized packages. 

Soundness and completeness 

PIVOT's operations are obviously sound (in the mathematical sense) in that every 

transformation of an expression or a theorem preserves the value of the expression or the 

truth-value of the theorem. (The one exception is the function-splitting rule, whi-:h 

produces a stronger theorem; if the proof of this theorem fails, no harm is done, and other 

techniques are tried.) A more interesting question is to what extent they are complete, i.e., 

for what variety of inputs PIVOT is guaranteed to produce a definitive answer. 

One difficulty arises at the level of expression representation. PIVOT uses a canonical 

form for arithmetic expressions, but it is not a normal form, i.e., two expressions which 
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always have the same value may have different internal representations, such as 

(x+y)/2+(x-y)/2 and x. Theoretical research [Mos7] shows that a normal form does exist 

for the expressions that PIVOT uses, which are built up from addition, multiplication, 

division, and exponentiation, if the variables are allowed to be real numbers; the results on 

Hilbert's 10th problem mentioned below seem to imply that no normal form exists in the 

integer case. If a normal form does not exist, this means that even determining that two 

expressions are equivalent (proving e1-e2=0) may be undecidable. (If a normal form 

exists, then any two equivalent expressions would have the same normal form: King's 

thesis discusses this problem in more detail.) PIVOT's canonical form for arithmetic 

expressions is actually a normal form as long as division is not involved, but there are 

some expressions involving division (such as the example above) which PIVOT cannot 

reduce. The author conjectures that the peculiar semantics of integer division make it 

intrinsically difficult to find a normal form for expressions involving it. 

There is an obvious normal form for logical expressions with no free variables: they are 

either "true" or "false"! This is no help, since of course the problem of determining 

whether a given such expression is true is only semi-decidable. Even in the more 

restricted domain of systems of linear inequalities involving only addition and 

multiplication of integers, the problem is very difficult: it is only in the last few years 

that Hilbert's 10th problem, to determine whether there is a solution to a set of equalities 

of this form, has been solved [Dav7]. PIVOT is relatively weak in its ability to solve 

linear systems, weaker than King's "linear solver". 

The author believes that these partially theoretical limitations do not have much effect on 

PIVOT's ability to verify real programs. The complexity of programs such as those in the 

appendices arises from their control structure and their treatment of structured data, and 

not from mathematical difficulty. The author's approach to program verification is a 

pragmatic one: this makes it very difficult to characterize the set of provable programs. 
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Comments and prospects 

The author feels that the progress achieved by PIVOT is the result of two differences in 

methodology from systems based strictly on theorem-proving power. One is the use of 

techniques borrowed from interpreters: the building up of name-value associations and the 

continuous application of simplifications. The other is the careful design of data 

structures specifically for holding knowledge about relationships in the specific value 

domain, the integers. The PIVOT experience tends to support the author's underlying 

philosophy: that methods which attempt to build coherent, structured images of the 

program's data universe will accomplish more than past methods which rely primarily on 

manipulating expressions. 

Almost any project which claims to have produced an advance in artificial intelligence 

must deal with Dreyfus' assertion [Drey7] that such advances are to be compared with 

those of a man who climbs successively taller trees in the belief that he will eventually be 

able to climb to the moon. The author feels that neither Dreyfus' argument nor its denial 

have sufficient confirming evidence to be considered established, and that such arguments 

at the present time are founded on personal philosophical bias. The author's bias is to 

believe that his efforts are to be compared to the construction of aircraft, which also 

cannot reach the moon, but for less fundamental reasons! 

Despite successes such as PIVOT's, current proof, verification, and planning systems are all 

severely limited in that they cannot deal effectively with the interactions between the 

various structures in an arbitrary, user-defined semantic universe. PIVOT, for example, 

has a great deal of knowledge about the universe of integer arithmetic "wired in", and 

performs badly when applied outside this domain. This knowledge appears both in the 

simplification rules for arithmetic expressions (e.g., X+-X=O), which could be converted to 

tabular form, and in the canonical representation form and the strategies used for 

organizing the data bases, which could not be tabularized. This is not happenstance: there 

is evidence that much of the power of human mathematical manipulation comes from the 
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way we organize our knowledge as well as its specific content, but it is disturbing that the 

chief strength of PIVOT may also be its major weakness. 

One area of current research, "automatic programming", is attempting to solve the 

generality problem by automating more of the process of choosing those data structures 

and processing algorithms appropriate to a particular problem domain. The author 

believes that this research will not yield useful results in the near future, and that it may 

well run into the same combinatorial problems as research into improving the power of 

theorem provers. Another approach, more modest and also being explored under the 

"automatic programming" rubric, is to try to gain the same kind of systematic, organized 
. 

experience with other semantic domains as has been gained with the integers. A recent 

paper [Boy?] indicates a small step in this direction for USP list structures. Examples of 

programs whose analysis might lead to further steps are London's LISP compilers [Lon7a], 

the Courtois-et-al synchronization problem [Cour7], or Knuth's storage allocators 

[Knuth?]. Some relevant work has already begun to appear in print [Bur?] [Dijk7] 

[Lev?] and the author hopes to work in this direction. 

While these two assaults on the generality problem are trying to improve our ability ·to 

build program analyzers, others believe that the key to success is to change the nature of 

the programs being analyzed. Morris, for example [Mor?], shows that certain semantics 

for pointers lead to simpler proofs about programs than others. Scott [Scott?] is 

investigating a characterization of programs as abstract objects, more like the usual 

mathematical idea of partial functions, in an attempt to bring algebraic ideas to bear on 

the analysis of program behavior. This approach, as well as higher-level languages 1;ke 

APL, SETL [Schwartz?], and QA4, indicates a desire to reduce the level of detail in 

programs and make them easier to analyze by bringing the language concepts more in line 

with the higher-level concepts which occupy the programmer's mind as he writes. The 

author believes that much of the difficulty encountered by program analyzers, including 
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verifiers, is that they must deduce the macro-intentions of the programmer from the 

micro-structure of the program, and that improving the expressive power of programming 

languages may help a great deal. 

One interesting aspect of Scott's attempt to reduce the idea of a program to its 

mathematical essence is that il essentially removes the idea of "control" from programs 

and converts them to static objects. An early experiment [Cod7] in producing a totally 

control-free programming language, by defining processes in terms of sets and mappings 

rather than files and loops, was a practical failure but yielded some tantalizing results such 

as a description of a simple assembler in 19 equations [Katz7]. The "covering functions" 

approach of Wegbreit <ind Poupon [Weg7], which characterizes the state of list-processing 

programs by the set of nodes visited up to that point rather than by a sequential 

description of the computation, also has some of the same flavor. The author believes that 

this attitude of removing the notion of control is very promising; some preliminary 

experiments with list-following programs by the author suggest that viewing such 

programs in terms of the history of their accesses to data structures as a static record, 

rather than trying to analyze the dynamic progress of the computation, may greatly 

simplify their analysis. 
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APPENDIX A 

Example with Key to Trace Output 

This Appendix contains a complete proof of King's Example 6, which moves the largest 

element of an array to the end by successive interchanges. Its purpose is to give the reader 

some feel for PIVOT's mental processes and to supply some background for the proofs in 

Appendices Band C. Familiarity with the material in Chapters Ill and IV will be helpful 

in following these proofs. The following comments refer to the line numbers attached to 

the trace output which begins on page A-4. 

(26) A new context is created for the processing of an initial segment of path #1. This 

saves work, since path #3 (line 174) has the same initial segment. 

(27) Lines like this announce which statement is currently under the scrutiny of the 

theorem generator. 

(28) This indicates that the context whose first two indices are 3 and 2 is current. The 

full index list is only printed when the context is created. 

(29)-(31) These lines result from the process described at the bottom of page lll-16. 

Lines like (30)-(31) record the addition of clauses: the first number is the context index, 

the second is a serial number within the context. 

(38) This notes an assignment to a scalar variable. 

(45) The value assigned to I on line 38 is retrieved in the course of evaluating the 

WHILE condition I<=N. 
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( 46) This is the result of the evaluation. 

(47) A new subcontext is needed to distinguish the path where the test succeeds (#1) 

from the one where the test fails (#3); see lines (174)-(179). 

(48)-(49) The new clause implies an old one, which is dropped. 

(53) This shows the result of evaluating an array reference. No assignments have been 

made to A yet. 

(73) This records an assignment to an array element. 

(77)-(78) Since the only entry on A's ELLIST is for A[l+l], and li=l+l, no case analysis 

is required to evaluate A[l-1] and return A[I]. 

(89) This is an application of the range-splitting technique discussed in Chapter Ill. Line 

100 is the other case. 

(95)-(97) These are deductions from RC$2, as described in Chapter IV . . 

(98)-(99) The goal evaluated to T, so the proof for this context is actually complete even 

though the theorem prover was never invoked. 

(102) This is an implicit assignment resulting from (101). 

(117) No special assumptions like (89)-(92) were made, but the goal evaluated to T 

anyway. 
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(120)-(123) The theorem prover found that the proofs were already complete. 

(192) This is a deduction from ULBL, as described in Chapter IV. 

(207)-(217) The theorem prover was required, but the proof was trivial. The clauses 

involved were 12.1 (line 182), 13.3 (line 193), and 13.4 (line 198). 

(396)-(427) This displays the context tree with the justifications for each context. Six 

theorems were generated, of which only one required use of the theorem prover. 
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( 1) #GET K6 
(2) K6.PIVOT;3 
(3) K6 
(4) New (2/1) for procedure K6 
(5) 815 conses, 8.139 seconds 
(6) T 

(7) #LIST 
(8) PROCEDURE K6(A,N) 
(9) 100 ASSERT N>O 

(10) 110 I~ 2 
(11) 200 LOOP 
(12) 210 WHILE l<=N: BEGIN 
(13) 300 IF A[l-l]>A[I] THEN BEGIN 
(14) 400 X ~ A[I]; A[I] ~ A[l-1]; A[l-1] ~ X 
(15) 410 ENO 
(16) 420 ASSERT .FA(l<=SK<I)A[l]>•A[K] 
(17) 430 ASSERT l<=N 
(18) 440 I~ I+l 
(19) 450 END 
(20) 500 ASSERT .FA(l<=SL<N)A[N]>•A[t] 

( 21 ) ITRACE T 

( 22) #PROVE 
(23) 894 conses, 18.801 seconds 
(24) Paths ready. 

(25) Path #1: 420 ... 450-200-210(1<=N)-300(A[l]<A[l-l]) ... 430 
(26) New (3/2/1) for paths beginning 420 ... 450-200 
(27) 420 ASSERT .FA(l<=SK<I)A[l]>=A[K] 
(28) In (3/2): 
(29) New (4/3/2/1) to evaluate .FA(K:K>O & l>K)A[l]>•A[K] 
(30) 4.1 K>O 
(31) 4.2 l>K 
(32) 3.1 .FA(K:K>O & l>K)A[l]>•A[K] 
(33) 430 ASSERT l<=N 
(34) In (3/2): 
(35) 3.2 l<=N 
(36) 440 I ~ I+l 
(37) In (3/2): 
(38) Set CVAL(I): I+l 
(39) 450 ENO 
(40) In (3/2): 
(41) 200 LOOP 
(42) In (3/2): 
(43) 210 WHILE I<=N: BEGIN 
(44) In (3/2): 
(45) CVAL(I) = l+l 
(46) Eval: l<=N => l<N 
(47) Hew (5/3/Z/l) assuming TRUE 1n ZlO 
(48) Cancel 3.2: l<=N 

A-4 
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(49) 5.1 I<N 
(50) 300 IF A[I-l]>A[I] THEN BEGIN 
(51) In (5/3): 
(52) CVAL(I) = I+l 
(53) Eval: A[I] => A[l+l] 
(54) CVAL(I) = l+l 
(55) Eval: A[l-1] => A[I] 
(56) Eval: A[l]<A[l-1] => A[I]>A[I+l] 
(57) New (6/5/3/2/1) assuming TRUE in 300 
( 58 ) 6 . l A[ I ] >A[ I+ 1 ] 
( 59) 400 X .. A[ I]; ... 
(60) In (6/5): 
(61) CVAL(I): l+l 
(62) Eval: A[l] => A[l+l] 
(63) Eval: A[ I] => A[ l+l] 
(64) Set CVAL(X): A[l+l] 
( 6 5) 400 . . . A[ I] .. A[ I-1]; 
(66) In (6/5): 
(67) CVAL(I) = l+l 
(68) Eval: A[I] => A[I+l] 
(69) Eval: A[l] => A[I+l] 
(70) CVAL(I) = I+l 
(71) Eval: A[I-1] => A[I] 
(72) Eval: A[I-1] => A[I] 
(73) Add ELLIST((ARRAY A)): (A[I+l] A[I]) 
(74) 400 ... A[I-1] .. X 
(75) In (6/5): 
(76) CVAL(I) = I+l 
(77) Eval: A[l-1] => A[I] 
(78) Eval: A[I-1] => A[I] 
(79) CVAL(X) = A[I+l] 
(80) Eval: X => A[I+l] 
(81) Add ELLIST((ARRAY A)): (A[I] A(I+l]) 
(82) 410 END 
(83) In (6/5): 

(84) 420 ASSERT .FA(l<=$K<l)A[l]>=A[K] 
(85) In (6/5): 
(86) Goal: .FA(K:K>O & I>K)A[I]>=A[K] 
(87) CVAL(I) = I+l 

A-5 

(88) Eval: K>O & l>K => K>O & l>=K 
(8~) New (7/6/5/3/2/1) for .FA goal 420, case k>O & I>K [in old 

range] 
(90) 7.1 K>O 
(91) 7.2 l>K 
(92) 7.3 A[l]>=A[K] 
(93) In (7/6): 
(94) CVAL(I) = I+l 
(95) From 7.2: I=K =>NIL 
(96) From 7.2: l=K-1 =>Nil 
(97) From 7.3: A[IJ>=A[K] => T 
(98) Eval: A[ I ]>=A[K] => T 
:99) Success in (7/6) 
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(100) New (8/6/5/3/2/1) for .FA goal 420, case l•K & K>O [not tn 
old range] 

(101) 8.1 I=K 
(102) Set CVAL(K): I 
(103) 8.2 K>O 
(104) In (8/6): 
(105) CVAL(I) = I+l 
(106) CVAL(K): I 
(107) Eval: A[K] => A(l+l] 
(108) From 6.1: A[l]>=A[l+l] => T 
(109) Eval: A[I]>=A[K] => T 
(110) Success in (8/6) 

(Ill) 430 ASSERT l<=N 
(112) In (6/5): 
(113) Goal: I<=N 
(114) CVAL(I) = I+l 
(115) From 5.1: I<N => T 
( 116) Eval: I<=N => T 
(117) No proof needed; Eval(goal) = T 
(118) 881 conses, 40.993 seconds 
(119) ((7 6 5 3 2 1) (8 6 5 3 2 1)) 

(120) Proof for (7/6) for .FA goal 420, case k>O & l>K [tn old 
range] 

( 121) Proved 

A-6 

(122) Proof for (8/6) for .FA goal 4ZO, case I=K & K>O [not in old 
range] 

( 123) Proved 

(124) Path #2: 420 ... 450-200-210(I<=N)-300(A[l]>•A[l-l])-420-430 
(125) 300 IF A[I-l]>A[I] THEN BEGIN 
(126) In (5/3): 
(127) CVAL(I) = I+l 
(128) Eval: A[I] => A[J+l] 
(129) CVAL(I) = I+l 
(130) Eval: A[l-1] => A[I] 
(131) Eval: A[l]<A(I-1] => A[l]>A[I+l] 
(132) New (9/5/3/2/1) assuming FALSE tn 300 
(133) 9.1 A[I]<=A[I+l] 
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(134) 420 ASSERT .FA(l<=SK<!)A(l]>•A[K] 
(135) In (9/5): 
(136) Goal: .FA(K:K>O & l>K)A(l]>=A[K] 
(137) CVAL(I) = l+l 
(138) Eval: K>O & I>K => K>O & l>=K 

A-7 

(139) New (10/9/5/3/2/l) for .FA goal 4ZO, case K>O & l>K [in old 
range] 

(140) 10.l K>O 
(141) 10.2 l>K 
(142) 10.3 A(l]>=A[K] 
(143) In (10/9): 
(144) CVAL(I) = 1+1 
(145) Eval: A[I] => A[I+l] 
(146) From 10.3 & 9.1: A(K]<=A[l+l] => T 
(147) Eval: A[l]>=A[K] => T 
(148) Success 1n (10/9) 
(149) New (11/9/5/3/2/l) for .FA goal 4ZO, case l=K & K>O [not in 

old range] 
(150) 11.l I=K 
(151) Set CVAL(K): I 
(152) 11.2 K>O 
(153) In (11/9): 
(154) CVAL(I) = I+l 
(155) Eval: A[I] => A(l+l] 
(156) CVAL(K) = I 
(157) Eval:A[K]=>A[I] 
(158) From 9.1: A(l]<=A[I+l] •> T 
(159) Eval: A( I ]>=A[K] => T 
(160) Success 1n (11/9) 

(161) 430 ASSERT I<=N 
(162) In (9/5): 
(163) Goal: l<=N 
(164) CVAL(I) = I+l 
(165) From 5.1: I<N => T 
(166) Eval: I<=N=>T 
(167) No proof needed, Eval(goal) • T 
(168) 476 conses, Zl.Z36 seconds · 
(169) ((10 9 5 3 z l) (11 ~ 5 3 z 1)) 

(170) Proof for (10/9) for .FA goal 4ZO, case K>O & l>K [in old 
range] 

( 171) Proved 
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(172) Proof for (11/9) for .FA goal 420, case l•k & k>O [not tn 
old range] 

( 173) Proved 

(174) 
(175) 
(176) 
( 177) 
( 178) 
( 179) 
(180) 
(181) 
( 182) 
(183) 

( 184) 
( 185) 
(186) 
( 187) 
(188) 
(189) 

(190) 
(191) 
( 192) 
(193) 
( 194) 
(195) 
(196) 
( 197) 
( 198) 
(199) 
(200) 
(201) 
(202) 
(203) 
(204) 
(205) 
(206) 

( 207) 

(208) 
(209) 
(210) 
( 211) 
(212) 
(213) 
(214) 
(215) 
(216) 
(217) 

Path 13: 420 ... 450-200-210(I>N)-500 
210 WHILE I<=N: BEGIN 

In (3/2): 
CVAL ( I ) = I+ 1 
Eval: l<=N => l<N 
New (12/3/2/l) assuming FALSE 1n 210 
From 3.2: I>=N => I=N 
Cancel 3.2: l<=N 

12.1 I=N 
Set CVAL(N): I 

500 ASSERT .FA(l<=$L<N)A[N]>=A[L] 
In (12/3): 
Goal: .FA(l:l>O & L<N)A[L]<=A[N] 
CVAL(N) = I 
Eval: L>O & L<N => L>O & I>L 
New (13/12/3/2/l) for .FA goal 500, case L>O & l>l & L<N [tn 
old range] 

13. l L>O 
13. 2 I >L 

From 13.2 & 12.1: L<N => T 
13.3 A[L]<=A[N] 

In (13/12): 
CVAL(N) = I 
Eval: A[N] => A[I] 
Eval: A[L]<=A[N] => A[I]>=A[L] 

13.4 A[I]<A[L] 
New (14/12/3/2/l) for .FA goal 500, case l>O & l>l & L>=N 
[not in old range] 

14.l L>O 
14.2 I>L 

From 14.2 & 12.l: L>=N =>Nil 
Success in (14/12) 
467 conses, 20.323 seconds 
(( 13 12 3 2 1)) 

Proof for (13/12) for .FA goal 500, case L>O & l>l & L<N [tn 
old range]: 
New (15/13/12/3/2/1) for proof 
Proving (15/13) ... 
Equalities: 

(from 12.1) N => I 
Cancel 12.1: I=N 
Cancel 13.3: A(l]<=A[N] 
From 13.4: A[I]>=A[L] =>NIL 
Success in (15/13) 
Proved: 86 conses, 2.281 seconds 
Success 1n (13/lZ) 
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(218) Path #4: 100 ... ZOO-ZlO(l<=N)-300~A[l]<A[l-ll)···430 
(219) New (16/2/1) for paths begtnntng 100 ... 200 
(220) 100 ASSERT N>O 
(221) In (16/2): 
(222) 16.1 N>O 
(223) 110 I ~ 2 
(224) In (16/2): 
(225) Set CVAL(I): 2 
(226) 200 LOOP 
(227) In (16/2): 
(228) 210 WHILE I<=N: BEGIN 
(229) In (16/2): 
(230) CVAL(I) = 2 
(231) Eval: I<=N => N>=2 
(232) New (17/16/2/1) assuming TRUE in 210 
(233) Cancel 16.1: N>O 
(234) 17.1 N>=2 
(235) 300 IF A[l-l]>A[I] THEN BEGIN 
(236) In (17/16): 
(237) CVAL(l) = 2 
(238) Eval: A[I] => A[2] 
(239) CVAL(I) = 2 
(240) Eval: A(l-1] => A[l] 
(241) Eval: A(l]<A(l-1] => A[l]>A[2] 
(242) New (18/17/16/2/l) assuming TRUE in 300 
(243) 18.1 A[l]>A[2] 
(244) 400 X ~ A[I]; ... 
(245) In (18/17): 
(246) CVAL(l) = 2 
(247) Eval: A[I] => A[2] 
(248) Eval: A[I] => A(2] 
(249) Set CVAL(X): A[Z] 
(250) 400 ... A[I] ~ A[l-1]; 
(251) In (18/17): 
(252) CVAL(I) = Z 
(253) Eval! A(I] => A[Z] 
(254) Eval: A[I] => A[Z] 
(255) CVAL(I) = 2 
(256) Eval: A[l-1] => A[l] 
(257) Eval: A[l-1] => A[l] 
(258) Add ELLIST((ARRAY A)): (A[2] A[l]) 
(259) 400 ... A[l·l] ~ X 
(260) In (18/17): 
(261) CVAL(l) = 2 
(262) Eval: A[l-1] => A[l] 
(263) Eval: A[l-1] => A(l] 
(264) CVAL(X) = A[2] 
(265) Eval: X => A[Z] 
(266) Add ELLIST((ARRAY A)): (A[l] A[2]) 
(267) 410 END 
(268) In (18/17): 



Appendix A 

(269) 420 ASSERT .FA(l<=SK<l)A[l]>•A[K] 
(270) In (18/17): 
(271) Goal: .FA(K:K>O & I>K)A(l]>=A[K] 
(272) CVAL(I) = 2 
(273) Eval: K>O & l>K => K=l 

~-10 

(274) New (19/18/17/16/2/1) for .FA go•l 420, c•se K•l a l>K [tn 
old range] 

(275) 19.1 K=l 
(276) Set CVAL(K): 1 
(277) 19.2 l>K 
( 278) 19. 3 A( I ]>•A[K] 
(279) In (19/18): 
(280) CVAL(I) = Z 
(281) Eval: A[I] => A[l] 
(282) CVAL(K) = l 
(283) Eval: A(K] => A[Z] 
(284) From 18.1: A[l]>=A[2] •> T 
(285) Eval: A[l]>=A[K] => T 
(286) Success in (19/18) 
(287) New (20/18/17/16/2/1) for .FA go•l 420, case K•l a l<•K 
(288) [not in old range] 
(289) 20.1 K=l 
(290) Set CVAL(K): 1 
(291) 20.Z I<=K 
(292) In (20/18): 
(293) CVAL{I) = 2 
(294) Eval~ A[I] => A[l] 
(295) CVAL(K) = 1 
(296) Eval: A[K] => A[2] 
(297) From 18.1: A[l]>•A[2] •> T 
(298) Eval: A[l]>=A[K] => T 
(299) Success in (Z0/18) 

(300) 430 ASSERT I<•N 
(301) In (18/17): 
(302) Goal: l<=N 
(303) CVAL(I) = 2 
(304) From 17.1: N>=Z •> T 
(305) Eval: l<=N => T 
(306) No proof needed, Ev1l(go1l) • T 
(307) 534 conses, 28.367 seconds 
(308) ((19 18 17 16 z 1) (20 18 17 16 2 1)) 
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(309) Proof for (19/18) for .FA goal 420, case K•l & l>K (1n old 
range] 

(310) Proved 

(311) Proof for (20/18) for .FA goal 420, case K=l & I<=K (not 1n 
old range] 

(312) Proved 

(313) Path #5: 100 ... 200-210(I<=N)-300(A[I]>=A[I-l])-420-430 
(314) 300 IF A[I-l]>A[I] THEN BEGIN 
(315) In (17/16): 
(316) CVAL(I) = 2 
(317) Eval: A[I] => A[Z] 
(318) CVAL(I) = 2 
(319) Eval: A[I-1] => A[l] 
(320) Eval: A[I]<A[l-1] => A(l]>A[2] 
(321) New (21/17/16/2/1) assuming FALSE 1n 300 
(322) 21.1 A[l]<=A[2] 

(323) 420 ASSERT .FA(l<=SK<I)A(l]>=A[K] 
(324) In (21/17): 
(325) Goal: .FA(K:K>O & I>K)A[I]>=A[K] 
(326) CVAL(I) = 2 
(327) Eval: K>O & I>K => K=l 
(328) New (22/21/17/16/2/1) for .FA goal 420, case K•l 6 l>K (1n 

old range] 
(329) 22.1 K=l 
(330) Set CVAL(K): 1 
(331) 22.2 I>K 
(332) 22.3 A[l]>=A[K] 
(333) In (22/21): 
(334) CVAL(I) = 2 
(335) Eval: A[I] => A[2] 
(336) CVAL(K) = 1 
(337) Eval: A[K) => A[l] 
(338) From 21.1: A[l]<=A[2) => T 
(339) Eval: A[l]>=A[K] => T 
(340) Success tn (22/21) 
(341) New (23/21/17/16/2/1) for .FA goal 420, case K•l & l<•K 
(342) [not in old range] 
(343) 23.1 K=l 
(344) Set CVAL(K): 1 
(345) 23.2 I<=K 
(346) In (23/21): 
(347) CVAL(I) = 2 
(348) Eval: A[I] => A(2] 
(349) CVAL(K) = 1 
(350) Eval: A[K] => A[l] 
(351) From 21.1: A[l]<=A[Z] •> T 
(352) Eval: A(l]>=A[K] => T 
(353) Success tn (23/21) 
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(354) 430 ASSERT l<=N 
(355) In (21/17): 
(356) Goal: l<=N 
(357) CVAL(I) = 2 
(358) From 17.l: N>=2 => T 
(359) Eval: I<=N => T 
(360) No proof needed, Eval{goal) = T 
(361) 323 conses, 19.579 seconds 
(362) ((22 21 17 16 2 1) (23 21 17 16 2 1)) 

A-12 

(363) Proof for (22/21) for .FA goal 420, case K=l & I>K [in o1d 
range] 

( 364) Proved 

(365) Proof for (23/21) for .FA goal 420, case K=l & l<=K (not in 
old range] 

( 366) Proved 

(367) Path #6: 100 ... 200-210(1>N)-500 
(368) 210 WHILE I<=N: BEGIN 
(369) In (16/2): 
(370) CVAL(I) ~ 2 
(371) Eval: I<=N => N>=Z 
(372) New (24/16/2/1) assuming FALSE in 210 
(373) Cancel 16.1: N>O 
(374) 24.l N=l 

(375) 
( 376) 
( 377) 
( 3 78) 
(379) 
(380) 
(381) 
(382) 
(383) 
(384) 

(385) 
(386) 
(387) 
(388) 
(389) 
(390) 
(391) 
( 392) 
( 393) 
(394) 
( 395) 

500 ASSERT .FA(l<=SL<N)A[N]>=A[L] 
In (24/16): 
Goal: .FA(L:L>O & L<N)A[L]<=A[N] 
New (25/24/16/2/1) for goal 500 

2 5. 1 L >0 
25.2 L<N 

In (25/24): 
25.3 A[L)>A[N] 

149 conses, 8.112 seconds 
((25 24 16 2 1)) 

Proof for (25/24) for goal 500: 
New (26/25/24/16/2/1) for proof 
Proving (26/25) ... 
Equalities: · 

(from 24.1) N => 1 
Cancel 24.1: N=l 
Cancel 25.2: L<N 
From 25.1: L<=O =>NIL 
Success in (26/25) · 
Proved: 56 conses, 1.805 seconds 
Success in (25/24) 
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(396) #JUSTIFY 
(397) (2/1) for procedure K6 
(398) (16/2} for paths beginning 100 ... 200 
(399) (24/16) assuming FALSE 1n 210 
(400) (25/24) for goal 500 
(401) Proved 
(402) (26/25) for proof 
(403) P~oved: 56 conses, 1.805 seconds 
(404) (17/16) assuming TRUE in 210 
(405) (21/17) assuming FALSE in 300 
(406) (23/21) for FA goal 420, case K=l & l<=K [not 1n 

old range] 
(407) Proved 
(408) (22/21) for FA goal 4~0, case K=l & l>K (1n old 

range] 
(409) Proved 
(4rO) (18/17) assuming TRUE in 300 
(411) (20/18) for .FA goal 420, case K=l & l<=K (not in 

old range] 
(412) 
(413) 

range] 

Proved 
(19/18) for FA goal 420, case K•l & I>K (in old 

(414) Proved 
(415) (3/2) for paths beginning 420 ... 450-200 
(416) (12/3) assuming FALSE in 210 
(417) (13/12) for .FA goal 500, case L>O a I>L & L<N [1n 

old range] 
(418) Proved 
(419) (15/13) for proof 
(420) Proved: 86 conses, 2.281 seconds 
(421) (5/3) assuming TRUE in 210 
(422) (9/5) assuming FALSE in 300 
(423) (11/9} for .FA goal 420, case l=K & K>O [not 1n 

old range] 
(424) (10/9) for .FA goal 420, case K>O & l>K [1n old 

(425) 
(426) 

(427) 

range] 

range] 

range] 

(6/5) assuming TRUE in 300 
(8/6) for .FA goal 420, case I•K & K>O [not in old 

(7/6) for .FA goal 420, case K>O 6 I>K [in old 
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#MODULES 
PROCEDURE CG 

#LIST 
PROCEDURE CG 

1 DECLARE ARRAY A, AS, AD 
2 LET PAIR(X,Y)=(X+Y+l)•(X+Y)/Z+Y+l 

100 K .. 0 
110 I .. 0 
120 A[O]e-0 
130 AS[O] .. O 
140 AO[O] .. 0 
150 LOOP 
160 ASSERT .FA(J:O<=J<=K){A[J]=J) 
170 ASSERT .FA(J:l<=J<=K)(AO[J]=J-1) 
180 ASSERT K=PAIR(l,AS(0]-1)-1 
190 ASSERT O<=I<=AS[O]<=K 
200 ASSERT .FA(J:O<=J<=l)(AS[J]+J=AS(O]). 
210 ASSERT .FA(J:l<J<=AS(O])(AS[J]+J=AS[O]+l) 
215 ASSERT .FA(J:AS[O]<J<=K)(AS[J]=O) 
220 REPEAT: BEGIN 
230 K .. K+l 
250 A(K] .. PAIR(A(l],A[AS[I]]) 
260 AS[K] .. 0 
270 AO(K] .. K-1 
280 AS(I] .. AS(l]+l 
290 AO[O] .. AS(O] 
300 I .. AD[I] 
310 END 

#PATHS 
1 conses, 1.482 seconds 
Path #1: 160 ... 310-150 ... 215 
Path #2: l. .. 215 

#PROVE 
1 conses, 1.301 seconds 
Paths ready. 

Path #1: 160 ... 310-150 ... 215 
New (3/2/1) for paths beginning 160 ... 310-150 ... ZlS 

160 ASSERT .FA(J:O<=J<=K)(A(J]=J) 
In (3/2): 
New (4/3/2/1) to evaluate .FA(J:J>=O & J<=K)J=A[J] 

4.1 J>=O 
4.2 J<=K 
3.1 .FA(J:J>=O & J<=K)J=A[J] 

Add ELLIST((ARRAY A)): ($$ $$>=0 & $$<=K $$) 
170 ASSERT .FA(J:l<=J<=K)(AD[J]=J-1) 

In (3/2): 
New (5/3/2/l) to evaluate .FA(J:J>O & J<=K)J=AD[J]+l 

5.1 J>O 
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5.2 J<=K 
3.2 .FA(J:J>O & J<=K)J=AD[J]+l 

Add ELLIST((ARRAY AD)): ($$ $$)0 & $$<=K $$-1) 
180 ASSERT K=PAIR(I,AS[0]-1)-1 

In (3/2): 
Eval: K=PAIR(l,AS[0]-1)-1 

=> 2*1+2*K=3*AS[O]+AS[O]t2-l ! 2*1+2*K=3*AS[O]+AS[O]t2 
3. 3 2* I+2*K=3*AS(O ]+AS[O ]tZ-1 ! Z*I+Z•K=3*AS[O ]+AS[O ]t2 

190 ASSERT O<=l<=AS[O]<=K 
In (3/2): 

3.4 I>=O 
3. 5 K >=AS[ 0] 
3. 6 I< =AS[ 0 ] 

200 ASSERT .FA(J:O<=J<=I)(AS[J]+J=AS[O]) 
In (3/2): 
New (6/3/2/1) to evalu~te .FA(J:J>=O & I>=J)J+AS[J]=AS[~] 

6.1 J>=O 
6.2 I>=J 
3.7 .FA(J:J>=O & I>=J)J+AS[J]=AS[O] 

Add ELLIST((ARRAY AS)): ($$ $$>=0 & 1>=$$ AS[O]-$$) 
210 ASSERT .FA(J:l<J<=AS(O])(AS(J]+J=AS(O]+l) 

In (3/2): 
New (7/3/2/l) to evaluate .FA(J:l<J & J<=AS(O])J+AS[J]=AS[O]+ 

7. l I<J 
7. 2 J<=AS[O] 
3.8 .FA(J:I<J & J<=AS[O])J+AS[J]=AS(O]+l 

Add ELLIST((ARRAY AS)): ($$ I<SS & SS<=AS[O] AS(O]+l-$$) 
215 ASSERT .FA(J:AS(O]<J<=K)(AS[J]=O) 

In (3/2): 
New (8/3/2/1) to evaluate .FA(J:J>AS[O] & J<•K)AS[J]•O 

8.1 J>AS(O] 
8.2 J<=K 
3.9 .FA(J:J>AS[O] & J<=K)AS(J]=O 

Add ELLIST((ARRAY AS)): ($$ $$>AS[O] & $$<•K 0) 
220 REPEAT: BEGIN 

In (3/2): 
230 K ~ K+l 

In (3/2): 
Set CVAL(K): K+l 

250 A(K] ~ PAIR(A[I],A[AS[I]]) 
In (3/2): 
CVAL(K) = K+l 
Eval: A(K] => A(K+l] 
Eval: A[K] => A[K+l] 
From 3.6: l>AS[O] => NIL 
From 3.6 & 3.5: I<=K => T 
From 3.6: I<=AS(O] => T 
From 3.4: l>=O => T 
Eval: AS[I] => AS[0]-1 
From 3.6: I<=AS[O] => T 
From 3.4 & 3.5 & 3.6: I+K>=AS[O] => T 
Eval: A(AS(I]] => AS[0]-1 
From 3.4: I>=O => T 
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From 3.6 & 3.5: l<=K => T 
Eval: A[I] =>I 
From 3.4: I>=O => T 
From 3.6 & 3.5: l<=K => T 
Ev a 1 : A[ I ] = > I 
From 3.6: I>AS[O] => NIL 
From 3.6 & 3.5: I<=K => T 
From 3.6: l<=AS[O] => T 
From 3.4: I>=O => T 
Eval: AS[ I] => AS[0]-1 
From 3.6: I<=AS[O] => T 
From 3.4 & 3.5 & 3.6: I+K>=AS[O] => T 
Eval: A[AS[I]] => AS[0]-1 
From 3.6: I>AS[O] => NIL 
From 3.6 & 3.5: I<=K => T 
From 3.6: l<=AS[O] => T 
From 3.4: I>=O => T 
Eval: AS[I] => AS[0]-1 
From 3.6: I<=AS[O] => T 
From 3.4 & 3.5 & 3.6: J+K>=AS[O] => T 
Eval: A[AS[I]] => AS[0]-1 
From 3.4: I>=O => T 
From 3.6 & 3.5: l<=K => T 
Eval: A[I] =>I 
From 3.6: I>AS[O] => NIL 
From 3.6 & 3.5: l<=K => T 
From 3.6: I<=AS[O] => T 
From 3.4: l>=O => T 
Eval: AS[I] => AS[O]•I 
From 3.6: l<=AS[O] => T 
From 3.4 & 3.5 & 3.6: l+K>=AS[O] •> T 
Eval: A(AS(I]] ;> AS(0)-1 
Eval: PAIR( A[ I ],A[AS[ I]]) 

=> AS[O)+(AS[O]+AS[O]t2)/2+1-1 
Add ELLIST((ARRAY A)): (A[K+l] ·AS[O]+(AS[O]+AS[O]t2)/2+1-1) 

260 AS[K] .. 0 
In (3/2): 
CVAL(K) = K+l 
Eval: AS[K] => AS[K+l] 
Eval: AS[K] => AS[K+l] 
Add ELLIST((ARRAY AS)): (AS[K+l] 0) 

270 AD(K] .. K-1 
In (3/2): 
CVAL(K) = K+l 
Eval: AD(K] => AD(K+l] 
Eval: AD(K] => AD[K+l] 
CVAL(K) = K+l 
Eval: K-1 => K 
Add ELLIST((ARRAY AD)): (AD[k+l] K) 

280 AS[I] .. AS[I]+l 
In (3/2): 
From 3.6 & 3.5: I=K+l => NIL 
From 3.6 & 3.5: I=k+l => NIL 
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From 3.6: l>AS[O] =>Nil 
From 3.6 & 3.5: I<=K => T 
From 3.6: I<=AS[O] => T 
From 3.4: 1>=0 => T 
Eval: AS[ I] => AS[O]-I 
Eval: AS[I]+l => AS[O]+l-1 
Add ELLIST((ARRAY AS)): (AS[I] AS[O]+l-I)' 

290 AD[O] ... AS(O] 
In (3/2): 
From 3.4 & 3.6 & 3.5: K=-1 =>NIL 
From 3.4 & 3.6 & 3.5: K=-1 =>NIL 
From 3.6 & 3.4: AS[O]<O => NIL 
From 3.4 & 3.6 & 3.5: K>=O => T 
From 3.4: 1<0 =>NIL 
From 3.6 & 3.4: AS[O]>=O => T 
From 3.4: l>=O => T 
New (9/3/2/1) for case I=O, so that AS[O] => AS[O]+l-1 
Cancel 3. 4: I >=0 

9. 1 I =O 
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Set ELLIST((ARRAY AS)): ((AS[O] AS[O]+l) (AS[K+l] 0) ($$ $$>AS[O] & 
$$<= 
K 0) ($$ 1<$$ & $$<=AS[O] AS(O]+l-$$) ($$ $$>=0 & I>=$$ AS[O]-$$)) 
Set CVAL(I): 0 
New (10/3/2/1) for case 110, so that AS[O] •> AS[O] 
Cancel 3.4: 1>=0 

10.l l>O 
In (9/3): 
From 9.1 & 3.6 & 3.5: K=-1 =>NIL 
Eval: AS[O] => AS[O]+l 
Eval: AS[O] => AS[O]+l 
Add ELLIST((ARRAY AD)): (AO(O] AS(O]+l) 
In (10/3): 
From 10.1 & 3.6 & 3.5: K=-1 =>NIL 
From 10.1: I=O =>NIL 
From 10.1 & 3.6 & 3.5: K=-1 =>NIL 
From 10.1 & 3.6: AS[O]<O =>NIL 
From 10.l & 3.6 & 3.5: K>=O => T 
F r om 1 0 . 1 : I < 0 = > N I L 
From 10.1 & 3.6: AS(O]>=O => T 
From 10.1: I>=O => T 
Add ELLIST((ARRAY AD)): (AD[O] AS[O]) 

300 I ... AD[ I] 
In (9/3): 
CVAL ( I ) = 0 
Eva l : AD[ I ] = > AS[ 0]+1 
Eval: AO[I] => AS[O]+l 
Set CVAL(I): AS[O]+l 
In (10/3): 
From 10 .1: I=O => NIL 
From 3.6 & 3.5: I=K+l => NIL 
From 10.1: I>O => T 
From 3.6 & 3.5: I<=K => T 
Eval: AD[ I] => 1-1 
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Eval: AD[I] => 1-1 
Set CVAL(I): I-1 

310 END 
In (9/3): 
In (10/3): 
150 LOOP 

In (9/3): 
In (10/3): 

160 ASSERT .FA(J:O<=J<=K)(A(J]:J) 
In (9/3): 
Goal: .FA(J:J>=O & J<=K)J=A[J] 
CVAL(K) = K+l 
Eval: J>=O & J<=K => J>=O & J<=K+l 

8-5 

New (11/9/3/2/l) for .FA goal 160, case J>=O & J<=K [tn old range] 
11. l J>=O 
11. 2 J<=K 
11.3 J=A[J] 

In (11/9): 
From 11.2: J=K+l =>NIL 
From 11.1: J>=O => T 
From 11.2: J<=K => T 
Eval: A[J] => J 
Eval: J=A[J] => T 
Success in (11/9) 
New (12/9/3/2/1) for .FA goal 160, case J•K+l & J>•O [not 1n old 
range] 

12.l J:K+l 
Set CVAL(J): K+l 
From 12.l & 9.1 & 3.6 & 3.5: J>=O => T 
In (12/9): 
CVAL(J) = K+l 
CVAL(J) = K+l 
Eval: A[J] => AS[O]+(AS[O]+AS[O]t2)/2+1-1 
Eval: J=A[J] => T 
Success in (12/9) 
In (10/3): 
Goal: .FA(J:J>=O & J<=K)J=A[J] 
CVAL(K) = K+l 
Eval: J>=O & J<=K => J>=O & J<=K+l 
New (13/10/3/2/1) for .FA goal 160, case J>•O & J<=K [tn old range] 

13.1 J>=O 
13.2 J<=K 
13.3 J=A[J] 

In (13/10): 
From 13.2: J:K+l => NIL 
From 13.1: J>=O => T 
From 13.2: J<=K => T 
Eva·l: A[J] => J 
Eval: J=A[J] => T 
Success in (13/10) 
New (14/10/3/2/l) for .FA goal 160, case J=K+l & J>•O [not in old 
range] 
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14.1 J=K+l 
Set CVAL(J): K+l 
From 14.1 & 10.l & 3.6 & 3.5: J>=O => T 
In (14/10): 
CVAL(J) = K+l 
CVAL(.J) = K+l 
Eva!: A[J] => AS[O]+(AS[O]+AS[O]t2)/2+1-1 
Eval: J=A[J] => T 
SuccP.ss in (14/10) 

170 ASSERT .FA(J:l<=J<=K)(AO(J]=J-1) 
In (9/3): 
Goal: .FA(J:J>O & J<=K)J=AD[J]+l 
CVAL(K) = K+l 
Eval: J>O & J<=K => J>O & J<=K+l 
New (15/9/3/2/l) for .FA goal ~70, case J>O & J<=K [in old range] 

15.l J>O 
15.2 J<=K 
15.3 J=AO[J]+l 

In (15/9): 
From 15.1: J=O =>NIL 
From 15.2: J=K+l => NIL 
From 15.1: J>O => T 
From 15.2: J<=K => T 
Eval: AO[J] => J-1 
Eval: J=AD[J]+l => T 
Success in (15/9) 
New (16/9/3/2/1) for .FA goal 170, case J•K+l & J>O (not in old 
range] 

16. l J=K+l 
Set CVAL(J): K+l 
From 16.1 & 9.1 & 3.6 & 3.5: J>O •> T 
In (16/9): 
CVAL(J) = K+l 
CVAL(J) = K+l 
From 9.1 & 3.6 & 3.5: K•-1 =>NIL 
Eval: AD[J] => K 
Eval: J=AD[J]+l => T 
Success in (16/9) 
In (10/3): 
Goal: .FA(J:J>O & J<=K)J=AD[J]+l 
CVAL(K) = K+l 
Eval: J>O & J<=K => J>O & J<=K+l 
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New (17/10/3/2/1) for .FA goal 170, case J>O & J<=K [in old range] 
17.l J>O 
17.2 J<=K 
17.3 J=AO(J]+l 

In (17/10): 
From 17.1: J=O =>NIL 
From 17.2: J=K+l =>NIL 
From 17.1: J>O => T 
From 17.2: J<=K => T 
Eval: AD[J] => J-1 
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Eval: J=AD[J]+l => T 
Success in (17/10) 
New (18/10/3/2/l) for .FA goal 170, case J•K+l & J>O [not tn old 
range] 

18.1 J:K+l 
Set CVAL(J): K+l 
From 18.l & 10.1 & 3.6 & 3.5: J>O => T 
In (18/10): 
CVAL(J) = K+l 
CVAL(J) = K+l 
From 10.l & 3.6 & 3.5: K•-1 •>NIL 
Eval: AD[J] => K 
Eval: J=AD[J]+l => T 
Success in (18/10) 

180 ASSERT K=PAIR(l,AS[0]-1)-1 
In (9/3): 
Goal: K=PAIR(I,AS[O]-I)-1 
CVAL(K) = K+l 
CVAL(I) = AS[O]+l 
Eval: AS[O] => AS[O]+l 
Eval: AS[O] => AS[O]+l 
Eval: AS[O] => AS[O]+l 
Eval: K=PAIR(I,AS[O]-I)-1 

=> 2*K=3*AS[O]+AS[O]t2-l ! Z•K=3•AS[O]+AS[O]t2 
New (19/9/3/2/l) for goal 180 

19.l 2*K#3*AS[O]+AS[O]t2-l 
19.2 2*K#3*AS[O]+AS[O]t2 

In (10/3): 
Goal: K=PAIR(I,AS[O]-I)-1 
CVAL(K) = K+l 
CVAL(I) = I-1 
From 10.1: I=O =>NIL 
From 10.1 & 3.6 & 3.5: K=-1 =>NIL 
From 10.1 & 3.6: AS[O]<O =>NIL 
From 10.1 & 3.6 & 3.5: K>=O => T 
From 10.1: I<O =>NIL 
From 10.l & 3.6: AS[O]>=O => T 
From 10.1: I>=O => T 
From 10.1: I=O => NIL 
From 10.1 & 3.6 & 3.5: K=-1 =>NIL 
From 10.1 & 3.6: AS[O]<O =>NIL 
From 10.1 & 3.6 & 3.5: K>=O => T 
From 10.1: I<O =>NIL 
From 10.l & 3.6: AS[O]>=O => T 
From 10.1: 1>=0·=> T 
From 10.1: I=O =>NI~ 
From 10.1 & 3.6 & 3.5: K=-1 =>NIL 
From 10.l & 3.6: AS[O]~O =>NIL 
From 10.l & 3.6 & 3.5: K>=O => T 
Fro.m 10.l: l<O =>NIL 
From 10.1 & 3.6: AS[O]>=O => T 
From 10.l: I>=O => T 
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Eval: K=PAIR(l,AS[0]-1)-1 => T 
No proof needed, Eval(goal) = T 

190 ASSERT O<=l<=AS[O]<=K 
In (9/3): 
Goal: 1>=0 & K>=AS[O] & l<=AS[O] 
CVAL(I) = AS[O]+l 
CVAL(K) = K+l 
Eval: AS[O] => AS[O]+l 
CVAL(I) = AS[O]+l 
Eval: AS[O] => AS[O]+l 
From 9.1 & 3.6: AS[0]>=-1 => T 
From 3.5: K>=AS[O] => T 
Eva l: I >=0 & K>=AS[O] & I<=AS[O] => 
No proof needed, Eval(goal) = T 
In (10/3): 
Goal: I>=O & K>=AS[O] & I<=AS[O] 
CVAL(I) = I-1 
CVAL(K) = K+l 
From 10.1: I=O =>NIL 
From 10.1 & 3.6 & 3.5: K=-1 =>NIL 
From 10.1 & 3.6: AS[O]<O =>NIL 
From 10.l & 3.6 & 3.5: K>=O => T 
From 10.1: l<O =>NIL 
From 10.1 & 3.6: AS[O]>=O => T 
From 10.1: l>=O => T 
CVAL(I) = 1-1 
From 10.1: l=O =>NIL 
From 10.l & 3.6 & 3.5: K=-1 =>NIL 
From 10.1 & 3.6: AS[O]<O =>NIL 
From 10.1 & 3.6 & 3.5: K>=O => T 
From 10 .1: 1<0 => NIL 
From 10.l & 3.6: AS[O]>=O => T 
F r om 1 0 . 1 : I > = 0 = > T · 
From 10.1: l>O => T 
From 3.5: K>=AS[0]-1 => T 
From 3.6: I<=AS[O]+l => T 
Eval: I>=O & K>=AS[O] & I<=AS[O] => T 
No proof needed, Eval(goal) = T 

200 ASSERT .FA(J:O<=J<=l)(AS[J]+J=AS[O]) 
In (9/3): 
Goal: .FA(J:J>=O & l>=J)J+AS[J]=AS[O] 
CVAL(I) = AS[O]+l 
Eval: J>=O & I>=J => J>=O & J<=AS[O]+l 
New (20/9/3/2/1) for .FA goal ZOO, case J>•O & I>=J & J<=AS(O]+l 
[in old range] 

20. 1 J>=O 
From 20.l & 9.1: I>=J => I=J 

20.2 I=J 
Set CVAL(J): I 
From 20.2 & 3.6: J<=AS[O]+l => T 

20.3 J+AS[J]=AS[O] 
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In (20/9): 
CVAL(J) = I 
Eval: AS(O] => AS(O]+l 
CVAL(J) = I 
From 9.1: l=O => T 
Eval: AS(J] => AS(O]+l 
From 9.1: I~o => T 
Eval: J+AS(J]=AS(O] => T 
Success in (20/9) 
New (21/9/3/2/1) for .FA goal 200, case J>=O & l<J & J<~AS[O]+l 
[not in old range] 
21.l J>=O 
21.2 I<J 
21.3 J<=AS[O]+l 

In (21/9): 
Eval: AS(O] => AS(O]+l 
From 21.2 & 9.1: J=O =>NIL 
From 21.3: J>AS[O] => J=AS[O]+l 
From 21.2: I<J => T 
From 21.1: J>=O => T 
From 21.2: I>=J =>NIL 
From 21.3 & 3.5: J>K => J=K+l 
From 21.3: J>AS(O] => J=AS[O]+l 
From 21.3 & 3.5: J>K => J=K+l 
New (22/21/9/3/2/1) for case J<•AS[O] & J#K+l, so that AS[J] •> 
AS[O]+l-
J 
Cancel 21.3: J<=AS(O]+l 

22.l J<=AS(O] 
From 22.l & 3.5: J#K+l => T 
New (23/21/9/3/2/1) for case J=AS[O]+l & J<•K, so that AS[J] •> 0 
Cancel 21.3: J<=AS[O]+l 

23.l J=AS[O]+l 
Set CVAL(J): AS[O]+l 
From 23.l & 3.5: J<=K => T 
New (24/21/9/3/2/1) for case J=K+l, so that AS(J] => 0 

24.l J=K+l 
Set CVAL(J): K+l 
In (22/21): 
Eval: AS(O] => AS(O]+l 
From 21.2 & 9.1: J=O =>NIL 
From 22.l & 3.5: J=K+l =>NIL 
From 22.1: J>AS(O] =>Nil 
From 22.l & 3.5: J<=K => T 
From 21.2: I<J => T 
From 22.1: J<=AS[O] => T 
Eval: AS(J] => AS[O]+l-J 
Eval: J+AS[J]=AS[O] => T 
Success in (22/21) 
In (23/21): 
CVAL(J) = AS[O]+l 
Eval: AS(O] => AS[O]+l 
CVAL(J) = AS[O)+l 
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From 23.l & 21.2 & 9.1: AS[OJ=-! =>NIL 
From 3.6: I<=AS[O] => T 
From 23.l & 21.2 & 9.1: AS[OJ>=-1 => T 
From 3.6: I>AS(O] => NIL 
From 3.5: K<=AS[O] => K=AS[O] 
From 3.5: K>=AS[O] => T 
Eval: AS(J] => 0 
Eval: J+AS(J]=AS(O] => T 
Success in (23/21) 
In (24/21): 
CVAL(J) = K+l 
Eval: AS[O] => AS[O]+l 
CVAL(J) = K+l 
From 24.1 & 21.2 & 9.1: K=-1 =>NIL 
Eval: AS[J] => 0 
Eval: J+AS[J]=AS[O] => K=AS[O] 
Cancel 3.5: K>=AS(O] 

24.2 K>AS(O] 
In (10/3): 
Goal: .FA(J:J>=O & I>=J)J+AS[J]=AS[O] 
CVAL(I) = I-1 
Eval: J>=O & l>=J => J>=O & l>J 
New (25/10/3/2/1) for .FA goal ZOO, case J>•O & l>J [in old range] 

25.1 J>=O 
25.2 I>J 
25.3 J+AS[J]=AS[O] 

In (25/10): 
From 10.1: I=O =>NIL 
From 10.1 & 3.6 & 3.5: K=-1 =>NIL 
From 10.1 & 3.6: AS[O]<O =>NIL 
From 10~1 & 3.6 & 3.5: K>=O => T 
From 10.l: l<O =>NIL 
From 10.1 & 3.6: AS(O]>=O => T 
From 10.l: I>=O => T 
From 25.Z: I=J => NIL 
From 25.2 & 3.6 & 3.5: J=K+l => NIL 
From 25.2 & .3.6: J>AS[O] => NIL 
From 25.2 & 3.6 & 3.5: J<=K => T 
From 25.2: l<J => NIL 
From 25.2 & 3.6: J<=AS[O] => T 
From 25.l: J>=O => T 
From 25.2: l>=J => T 
Eval: AS[JJ => AS[O]-J· 
Eval: J+AS(J]=AS[O] => T 
Success in (25/10) 
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210 ASSERT .FA(J:I<J<=AS[O])(AS[J]+J=AS[O]+l) 
In (9/3): 
Goal: .FA(J:I<J & J<=AS[O])J+AS[J]=AS[O]+l 
CVAL(I) = AS[O]+l 
Eval: AS[O] => AS[O]+l 
Eval: I<J & J<=AS[O] => NIL 
No proof needed, Eval(goal) = T 
In (10/3): 
Goal: .FA(J:I<J & J<=AS[O])J+AS[J]=AS[O]+l 
CVAL( I) = 1-1 
Fr om 10 . 1 : I = 0 = > N I L 
From 10.1 & 3.6 & 3.5: K=-1 =>NIL 
From 10.1 & 3.6: AS[O]<O =>Nil 
From 10.1 & 3.6 & 3.5: K>=O => T 
From 10.1: I<O =>NIL 
From 10.1 & 3.6: AS[O]>=O => T 
From 10.l: I>=O => T 
Eval: I<J & J<=AS[O] 

=> I<=J & J<=AS[O] 
New (26/10/3/2/1) for .FA goal 210, case l<J & J<=AS[O] [1n old 
range] 

26.1 I<J 
26. 2 J<=AS[O] 
26.3 J+AS[J]=AS[O]+l 

In (26/10): 
From 10.1: l=O =>NIL 
From 26.2 & 3.5 & 26.1 & 10.1: K=-1 =>Nil 
From 26.2 & 26.1 & 10.1: AS[O]<O =>NIL 
From 26.2 & 3.5 & 26.1 & 10.1: K>=O => T 
From 10.1: l<O =>NIL 
From 26.2 & 26.1 & 10.1: AS[O]>=O => T 
From 10.1: I>=O => T 
From 26.1: I=J =>NIL 
From 26.2 & 3.5: J=K+l =>NIL 
From 26.2: J>AS[O] => Nil 
From 26.2 & 3.5: J<=K => T 
From 26.1: l<J => T 
From 26.2: J<=AS[O] => T 
Eval: AS[J] => AS[O]+l-J 
Eval: J+AS[J]=AS[O]+l => T 
Success in (26/10) 
New (27/10/3/2/1) for .FA goal 210, case I=J & J<=AS[O] 
[not in old range] 

27.1 l=J 
Set CVAL(J): I 
From 27.1 & 3.6: J<=AS[O] => T 
In (27/10): 
CVAL(J) = I 
From 10.l: l=O =>NIL 
From 10.l & 3.6 & 3.5: K=-1 =>NIL 
From 10.1 & 3.6: AS[O]<O =>Nil 
From 10.1 & 3.6 & 3.5: K>=O => T 
From 10.1: l<O =>NIL 

B-11 
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From 10.l & 3.6: AS[O]>=O => T 
From 10.1: 1>=0 => T 
CVAL(J) = I 
Eval: AS(J] => AS(O]+l-1 
Eval: J+AS(J]=AS[O]+l => T 
Success in (27/10) 

215 ASSERT .FA(J:AS[O]<J<=K)(AS[J]=O) 
In (9/3): 
Goal: .FA(J:J>AS(O] & J<=K)AS[J]=O 
Eval: AS(O] => AS(O]+l 
CVAL(K) : K+l 
Eval: J>AS[O] & J<=K 

=> J>=AS[0]+2 & J<=K+l 

B-lZ 

New (28/9/3/2/1) for .FA goal 215, case J>•AS(O]+Z & J<=K (in old 
range] 

28.1 J>=AS[0]+2 
28.2 J<=K 
28.3 AS[J]=O 

In (28/9): 
From 28.1 & 9.1 & 3.6: J:O =>NIL 
From 28.2: J=K+l => NIL 
From 28.1: J>AS[O] => T 
From 28.2: J<=K => T 
Eval: AS(J] => 0 
Eval: AS(J]=O => T 
Success in (28/9) 
New (29/9/3/2/1) for .FA goal 215, case J=K+l & J>=AS(O]+Z 
(not in old range] 

29.1 J:K+l 
Set CVAL(J): K+l 

29.2 J>=AS[0]+2 
In (29/9): 
CVAL(J) = K+l 
From 29.2 & 29.1 & 9.1 & 3.6: K=-1 •>NIL 
Eval: AS[J] => 0 
Eval: AS[J]=O => T 
Success in (29/9) 
In (10/3): 
Goal: .FA(J:J>AS(O] & J<=K)AS(J]=O 
From 10.1: I=O =>NIL 
From 10.1 & 3.6 & 3.5: K=-1 =>NIL 
From 10.l & 3.6: AS[O]<O =>NIL 
From 10.1 & 3.6 & 3.5: K>=O => T 
From 10.1: l<O =>NIL 
From 10.1 & 3.6: AS[O]>=O => T 
From 10.1: l>=O => T 
CVAL(K) = K+l 
Eval: J>AS[O] & J<=K 

=> J>AS[O] & J<=K+l 
New (30/10/3/2/l) for .FA goal 215, case J>AS[O] & J<=K [in old 
range] 

30. 1 J>AS[ 0] 
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30.2 J<=K 
30.3 AS[J]=O 

In (30/10): 
From 30.1 & 3.6: I=J =>NIL 
From 30.2: J:K+l =>NIL 
From 30.1: J>AS[O] => T 
From 30.2: J<=K => T 
Eval: AS[J] => 0 
Eval: AS[J]=O => T 
Success in (30/10) 

B-13 

New (31/10/3/2/1) for .FA goal 215, case J=K+l & J>AS[O] 
[not in old range] 

31.1 J=K+l 
Set CVAL(J): K+l 
From 31.l & 3.5: J>AS[O] => T 
In (31/10): 
CVAL(J) = K+l 
From 3.6 & 3.5: l=K+l =>NIL 
Eval: AS[J] => 0 
Eval: AS[J]~O => T 
Success in (31/10) 
10286 conses, 477.177 seconds 
((11 g 3 2 1) (12 g 3 2 1) (13 10 3 2 1) (14 10 3 z 1) (15 9 3 2 1) 
(16 9 3 2 1) (17 10 3 2 1) (18 10 3 2 1) (19 g 3 2 1) (20 9 3 2 1) 
(22 21 g 3 2 1) (23 21 g 3 2 1) (24 21 9 3 2 1) (25 10 3 2 1) (26 
10 3 2 1) (27 10 3 2 1) (28 g 3 2 1) (29 g 3 2 1) (30 10 3 2 1) (31 
10 3 2 1)) 

Proof for ( 11/9) for .FA goal 160, case J>=O & J<=K [tn old range] 
Proved 

Proof for (12/9} for .FA goal 160, case J•K+l & J>•O (not tn old 
range] 
Proved 

Proof for (13/10) for .FA goal 160, case J>•O & J<•K [tn old range] 
Proved 

Proof for (14/10) for .FA goal 160, case J=K+l & J>•O (not tn old 
r'ange] 
Proved 
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Proof for (15/9) for .FA goal 170, case J>O & J<=K (tn old range] 
Proved 

Proof for (16/9) for .FA goal 170, case J=K+l & J>O [not tn old 
range] 
Proved 

Proof for (17/10) for .FA goal 
Proved 

Proof for ( 18/10) for .FA goal 
range] 
Proved 

Proof for (19/9) for goal 180: 
New (32/19/9/3/2/1) for proof 
Proving (32/19) ... 

170, 

170, 

3.1 A .FA(J:J>=O & J<=K)J=A[J] 
3.2 A .FA(J:J>O & J<=K)J=AD[J]+l 

case J>O & J<=K [tn old range] 

case J=K+l & J>O [not tn old 

3.3 A 2•I+2•K=3•AS[O]+AS[O]t2-l ! Z•I+Z•K=l•AS(O]+AS(O]tZ 
3.5 A K>=AS(O] 
3. 6 A I< =AS( 0 ] 
3.7 A .FA(J:J>=O & l>=J)J+AS[J]=AS[O] 
3.8 A .FA(J:l<J & J<=AS[O])J+AS(J]=AS[O]+l 
3.9 A .FA(J:J>AS(O] & J<=K)AS(J]=O 
9.1 A l=O 

19.1 G Z•Kl3•AS(O]+AS[O]tZ-l 
19.Z G Z•K#3*AS(O]+AS[O]t2 

Equal it1 es: 
(from 9.1) I=> 0 

Cancel 9. 1: I =O 
Cancel 3.6: l<=AS[O] 

32.1 AS[O]>=O 
Cancel 3.3: 2*1+2*K=3*AS[O]+AS[O]tZ-l ! Z•J+Z*K•3*AS(O]+AS(O]tZ 
From 19.1: 2•K=3•AS[O]+AS(O]t2-l =>Nil 
From 19.2: 2•K=3*AS[O]+AS[O]t2 => Nil 
Success in (32/19) 
Proved: 163 conses, 6.594 seconds 
Success 1n (19/9) 

Proof for (20/9) for .FA goal ZOO, case J>•O & l>•J & J<=AS[O]+l 
[in old range] 

Proved 
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Proof for (22/21) for case J<=AS[O] & J#K+l, so that AS[J] => AS[O]+ 
1-J 
Proved 

Proof for (23/21) for case J=AS[O]+l & J<=K, so that AS[J] => 0 
Proved 

Proof for (24/21) for case J=K+l, so that ~S(J] •> 0: 
New (33/24/21/9/3/2/1} for proof 
Proving (33/24) ... 

3.1 A .FA(J:J>=O & J<=K)J=A[J] 
3.2 A .FA(J:J>O & J<=K)J=AO[J]+l 
3.3 A 2*1+2*K=3*AS[O]+AS[O]t2-l ! 2*1+2*K•3*AS[O]+AS[O]t2 
3.6 A l<=AS[O] 
3.7 A .FA(J:J>=O & l>=J)J+AS[J]=AS[O] 
3.8 A .FA(J:I<J & J<=AS[O])J+AS[J]=AS[O]+l 
3.9 A .FA(J:J>AS[O] & J<=K)AS(J]=O 
9.1 A l=O 

21. l A J>=O 
21.2 A l<J 
21.3 A J<=AS[O]+l 
24.l A J=K+l 
24.2 G K>AS[O] 

Equalities: 
(from 9 .1) I => 0 
(from 24.1) K => J-1 

Cancel 24.l: J=K+l 
Cancel 9.1: l=O 
Cancel 3.6: l<=AS[O] 

33.1 AS[O]>=O 
Cancel 21.Z: I<J 
Cancel 21.1: J>=O 

33.2 J>O 
Cancel 24.2: K>AS[O] 
From 21.3: J>=AS[0]+2 =>NIL 
Success in (33/24) 
Proved: 314 conses, 11.722 seconds 
Success in (24/21) 

Proof for (25/10) for .FA goal 200, case J>•O 6 l>J [fn old range] 
Proved 
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Proof for (26/10) for .FA goal 210, case l<J & J<=AS[O] [in old 
range] 
Proved 

Proof for (27/10) for .FA goal 210, case l=J & J<=AS[O] 
[not in old range] 

Proved 

8-16 

Proof for (28/9) for .FA goal 215, case J>=AS[0]+2 & J<=K [in old 
range] 
Proved 

Proof for (29/9) for .FA goal 215, case J=K+l & J>=AS[0]+2 
[not in old range] 

Proved 

Proof for (30/10) for .FA goal 215, case J>AS[O] & J<=K [in old 
range] 
Proved 

Proof for (31/10) for .FA goal 215, case J=K+l & J>AS[O] 
[not in old range] 

Proved 

Path 12: 1. .. 215 
New (34/2/1) for paths beginning 1 ... 215 

1 DECLARE ARRAY A, AS, AD 
In ( 34/2): 

2 LET PAIR(X,Y)=(X+Y+l)*(X+Y)/Z+Y+l 
In (34/2): 
100 K +- 0 

In ( 34/2): 
Set CVAL(K): 0 

110 I .. 0 
In ( 34/2): 
Set CVAL ( I ) : 0 

120 A[O] +- 0 
In (34/2): 
Add ELLIST((ARRAY A)): (A[O] 0) 

130 AS[O] .. 0 
In (34/2): 
Add ELLIST((ARRAY AS)): (AS[O] 0) 

140 AD[O] +- 0 
In ( 34/2): 
Add ELLIST((ARRAY AD)): (AD[O] 0) 

150 LOOP 
In (34/2): 
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160 ASSERT .FA(J:O<=J<=K)(A[J]=J) 
In ( 34/2): 
Goal: .FA(J:J>=O & J<=K)J=A[J] 
CVAL(K) = 0 
Eval: J>=O & J<=K => J:O 
New (35/34/2/1) for .FA goal 160, case J•O & J<•K (tn old range] 

35.1 J=O 
Set CVAL(J): 0 

35.2 J<=K 
35.3 J=A[J] 

In ( 35/34): 
CVAL(J) = 0 
CVAL(J) = 0 
Eval: A[J] => 0 
Eval: J=A[J] => T 
Success 1n (35/34) 

B-17 

New (36/34/2/1) for .FA goal 160, case J•O & J>K [not tn old range] 
36. 1 J=O 

Set CVAL( J): 0 
36.2 J>K 

In (36/34): 
CVAL(J) = 0 
CVAL(J) = 0 
Eval: A[J] => 0 
Eval: J=A[J] => T 
Success in (36/34) 

170 ASSERT .FA(J:l<=J<=K)(AD[J]•J-1) 
In (34/2): 
Goal: .FA(J:J>O & J<=K)J=AD[J]+l 
CVAL(K) = 0 
Eval: J>O & J<=K =>NIL 
No proof needed, Eval(goal) • T 

180 ASSERT K•PAIR(I,AS[0]-1)-1 
In ( 34/2): 
Goal: K=PAIR(I,AS(0]-1)-1 
CVAL(K) = 0 
CVAL(I) = 0 
Eval: AS[O] => 0 
Eval: AS[O] => 0 
Eval: AS[O] => 0 
Eval: K=PAIR(J,AS[0]-1)-1 => T 
No proof needed, Eval(goal) • T 
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190 ASSERT O<=l<=AS[O]<=K 
In (34/2): 
Goal: I>=O & K>=AS[O) & l<=AS[O] 
CVAL (I) = 0 
CVAL(K) = 0 
Eval: AS[O] => 0 
CVAL ( I) = 0 
Eval: AS[O] => 0 
Eval: 1>=0 & K>=AS[O] & l<=AS[O] => T 
No proof needed, Eval(goal) = T 

200 ASSERT .FA(J:O<=J<=l)(AS[J]+J=AS[O]) 
In ( 34/2): 
Goal: .FA(J:J>=O & I>=J)J+AS[J]=AS[O] 
CVAL(I) = 0 
Eval: J>=O & I>=J => J=O 
New (37/34/2/1) for .FA goal 200, case J=O & I>=J (tn old range] 

37.1 J=O 
Set CVAL(J): 0 

37. 2 I >=J 
37.3 J+AS[J]=AS[O] 

In ( 37 /34): 
CVAL(J) = 0 
Eval: AS[O] => 0 
CVAL(J) = 0 
Eval: AS[J) => 0 
Eval: J+AS[J]=AS[O] => T 
Success In (37/34) 

B-18 

New (38/34/2/1) for .FA goal 200, case J=O & I<J [not tn old range] 
38 .1 J=O 

Set CVAL(J): 0 
38.2 I<J 

In ( 38/34): 
CVAL(J) = 0 
Eval: AS[O] => 0 
CVAL(J) = 0 
Eval: AS[J] => 0 
Eval: J+AS[J]=AS[O] => T 
Success in (38/34) 

210 ASSERT .FA(J:l<J<=AS(O])(AS[J]+J=AS[O]+l) 
In ( 34/2): 
Goal: .FA(J:l<J & J<=AS[O])J+AS[J]=AS[O]+l 
CVAL(I) = 0 
Eval: AS[O] => 0 
Eval: I<J & J<=AS[O] =>NIL 
No proof needed, Eval(goal) = T 
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215 ASSERT .FA(J:AS[O]<J<=K)(AS[J]=O) 
In ( 34/2): 
Goal: .FA(J:J>AS[O] & J<=K)AS[J]=O 
Eval: AS[O] => 0 
CVAL(K) = 0 
Eval: J>AS[O] & J<=K =>NIL 
No proof needed, Eval(goal) = T 
792 conses, 53.961 seconds 
((35 34 2 1) (36 34 2 1) (37 34 2 1) (38 34 2 1)) 

B-19 

Proof for (35/34) for .FA goal 160, case J=O & J<•K [in old range] 
Proved 

Proof for ( 36/34) for .FA goal 160, case J=O & J>K [not in old 
range] 
Proved 

Proof for (37 /34) for .FA goal 200, case J=O & I>=J (in old range] 
Proved 

Proof for (38/34) for .FA goal zoo. case J•O & I<J [not 1n old 
range] 
Proved 
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APPENDIX C 

Analysis of the Floyd Protocol 

In this appendix we present the dialogue envisioned by Floyd in his paper "Toward 

Interactive Design of Correct Programs" [Floyd]. In this dialogue, the computer takes the 

initiative in leading the man through the design and coding of a small program. Material 

copied from the paper will appear indented; each utterance will be numbered for 

reference. In the interests of brevity, a few of Floyd's comments [in square brackets] have 

been dropped and the text has been slightly abbreviated. Material not indented is the 

present author's analysis. 

We assume that after each of the man's inputs, the computer performs some analysis or 

else possibly falls back on a list of standard questions that it knows are appropriate to 

given situations. It is worth noting that since PIVOT has actually carried out all the 

proofs required by this scenario, the task of implementing a system like the one 

envisioned by Floyd can now legitimately be classified as system programming rather than 

artificial intelligence (a task which the author hopes to accomplish in the near future). 



Appendix C C-2 

We find the programmer preparing to write a procedure which will locate a symbol in a 

sorted table of known size. He calls the symbol X, the table Al' A2, ••• AN, The man 

speaks first. I enclose my own comments on the interaction in square brackets. 

(1) Man: I want to design a program I shall call 'Locate X in table A1 

... AN', or Pl for short. [The name is simply for the programmer's 

convenience: the system makes no attempt to interpret or understand 

it.] In Pl, Xis a symbol, N and Lare integers, and A is an array of 
symbols. The values of X, N, and A may not change in Pl. We assume 

the following true at the start of Pl (its ~n!~f~~~n! condition): 

(1.1) For all integers i, j, l<i<j<N ::> A;<Aj. 

I will abbreviate this by 'A monotone'. 

(1.2) There is an integer k, l<k<N, for which Ak=X. 

I will abbreviate this by 'X IN A{l:N}'. After execution, Pl must 

guarantee (its fQn~~~M~n! condition) that 

(1.3) l<L:5N 
( 1. 4) AL =X. 

(2) Computer: The consequent of Pl, (1.3) and (1.4), does not logically 
follow from the antecedent, (1.1) and (1.2) (as I can demonstrate by 
counterexample), so Pl must apparently change L. [Recall that A, N, 
and X are protected from change.] 

The man has finished specifying the input-output relations for Pl, and the computer 
picks on the most obvious need, namely that L is an output variable (since it is mentioned 
in the consequent but not the antecedent) which must- be set. 

(3) Man: Let Pl be an iteration. [He has the idea of keeping pointers B 
and C, bounding the region of A where the symbol X will be found.] 
Let Pl be 

ITERATE UNTIL B=C: P2. 

(4) Computer: What conditions do you want to assume before and after P2? 
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I.e .. as the inductive assertion. The computer asks this question because 
the man has specified an interation and the inductive assertion has not 
been specified yet, although the man has the option of saying that he does 
not want to specify one {e.g., if an inductive assertion for an inner loop 
wi 11 cut the outer one too). 

( 5) Man: 

{ 2. 1) 

(2.2) 
( 2. 3) 

B and C are integer variables of Pl. 
l<B<C<N. 
There is an integer k, B<k<C. for which Ak=X, abbreviated 

X IN A{B: C}. 

( 6) Computer: Why does P2 terminate? 

Another standard question. PIVOT does not currently concern itself with termination, 
since this is generally easier to show than correctness of results. 

(7) Man: C-B is a non-negative integer, decreasing at each cycle of 
the iteration. 

This is the standard rationale for programs dealing with integers. 

( 8) Computer: The antecedent of P2 does not fo 11 ow from the antecedent 
of Pl and the iteration-nonterminated condition B*C. Do you want 
to initialize the iteration later? [This suggestion is usually 
good programming practice.] 

In general programming practice, one wants the inductive assertion to hold even before the 
terminating condition has been tested, so the clause "and the ... condition" really should 
not appear. As in (2), the computer notices that B and C have not been set in the path 
from the initial condition to the entry to P2, and suggests that they be set. 

(9) Man: Yes. 

(10) Computer: The consequent of P2, with the iteration termination 
condition, does not seem to imply the consequent of Pl. Do you want 
to finalize the iteration later? 

This is also good practice. Again, the computer notices that L is not set on the path from 
the head of P2 to the consequent of Pl. 
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(11) Man: Yes. 

(12) Computer: Do you want to design P2 now? 

Design of the other two control paths has been deferred, so this is the only task left at the 
moment. 

(13) Man: Yes. 

(14) Computer: In P2, A, X, and N are invariant; B, C, and N are 

integers. 

( 3. 1) 

(3.2) 

(3.3) 

Antecedent condition is: 

l<B<C<N 

X IN A{B:C} 

A monotone 

[The computer does not mention that X IN A{l:N}, since that 

logically follows from 3.1 and 3.2.] 

Consequent condition is: 

(3.4) 

(3.5) 

(3.6) 

1<8 '<C '<N 

X IN A{B' : C'} 

C'-B'<C-B 

You must change C or B. (The computer does not mention 'A monotone' 

as consequent condition, since it is part of the antecedent 

condition and A is invariant.] 

(15) Man: Define P2 as 

D := (B+C)/2; (Integer division] 

IF X<Ao THEN C := D 

ELSE B : = D 

(16) Computer: Well, suppose 8=1. C=2, N=2, X=O, A1=-1. P2 becomes 

D : = ( 1+2) /2 ( = 1}; 

IF 0<-1 (=FALSE) THEN •.• ELSE B := 1 
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resulting in B'=l, C'=2. This violates the condition needed for 
termination, that C'-B'<C-B. [See Appendix for sketch of how the 
computer found the counter example.] 

Now the computer has a fully specified path, and attempts verification. When the 
verification of the indicated path fails, the computer must be able to recognize that a 
counterexample is wanted, but finding it is not difficult: the process followed by PIVOT 
appears at the end of this appendix. 

(17) Man: Sorry. Let's try modifying the third line of P2: call it P3. 

(18) Computer: Antecedent is 

( 4. 1) 

( 4. 2) 

(4.3) 

(4.4) 

(4.5) 

l<B<C<N [Note that B=C is not possible.] 
X IN A{B:C} 
A monotone 
O=(B+C)/2 
X>A0 

Consequent is 

(4.6) 

( 4. 7) 

(4.8) 

l<B I <CI <N 
X IN A{B' :C'} 
C'-B'<C-B 

4.1 is 3.1 modified by going through the end test B=C which fails. (PIVOT will actually 

replace B<C by B<C in THCLAUSEP.) 4.2 and 4.3 are 3.2 and 3.3: the variables in them 
have not changed. 4.4 is the CVAL entry produced by the assignment to D. 4.5 is the 
result of the IF X<A 0 failing. 4.6 through 4.8 are just 3.4 through 3.6, since P3 is at the 

end of the loop. 

(19) Man: What must P3 do if B=l, C=2, N=2, X=O, A1=-1? 

I.e., "What must P3 do in the case that failed?" 

( 20) Computer: Consequent is then B' =2, C' =2. 

This comes from substituting the supplied values into 4.1 through 4.8, wrapping 4.6 
through 4.8 in .EX(B',C') ( ... ) in a manner similar to the procedure used to find the 

counterexample, and doing the proof. The proof appears at the end of this appendix. 
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(21) Man: Check whether B<D+l<C follow" :rom the antecedent of P3. 

( 22) Computer: True. 

I.e., B<(B+C)/2+l<C given that l<B<C, a fairly trivial piece of algebra. 

(23) Man: Define P3 as B := 0+1. 

(24) Computer: That works. Would you like to design the initialization 
of P2? 

The verification goes through. The body of P2 is now complete, so the computer retrieves 
the first deferred task. 

(25) Man: Yes. 

(26) Computer: Antecedent is 

( 5. 1) 

(5.2) 

A monotone 
X IN A{1:N} 

Consequent is 

(5.3) 

(5.4) 

l<B<C<N 
X IN A{B:C} 

5.1 and 5.2 are the antecedent of Pl; 5.3 and 5.4 are 2.2 and 23, the antecedent of P2. 

(27) Man: Initialization of P2 is 

B := 1; C := N. 

(28) Computer: That works. Woul6 you like to design the finalization of 
P2? 

This is the same situation as (24). 

(29) Man: Yes. 

(30) Computer: Antecedent is 
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(6.1) l<B=C~N 

(6.2) A8=X 

Consequent is 

(6.3) l<L'<N 

( 6 • 4 ) AL , = X • 

May I try? 

6.1 is 3.1 with B=C taken into account. (PIVOT already does this.) 6.2 is 3.2 with B=C 
taken into account. (PIVOT does this too.) 6.3 and 6.4 are the consequent of Pl. The 
computer can produce (32) by a simple constructive proof of .EX(L')(6.3 and 6.4) 
(PIVOT's proof appears at the end of this appendix); presumably it has already done this 
and is only asking "May I try?" to avoid damaging the man's ego. 

(31) Man: Yes. 

(32) Computer: L := B. 

(33) Man: That works. May I see the complete program? 

(34) Computer: BEGIN 

INVARIANTS A, N, X; INTEGER B, C, D; 

(ASSERT N>l, A MONOTONE, X IN A{l:N}); 

B := 1; C := N; 

ITERATE (ASSERT l<B<C<N, X IN A{B:C}) 

UNTIL B=C: 

BEGIN 

D := (B+C) DIV 2; 

IF X<A0 THEN c : = D 

ELSE B : = D+l; 

END 

L : = B; 

(ASSERT 1<L<N, AL=X) 

END 

The computer has inserted a small amount of syntactic embellishment 
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#GET FLOYD 
FLOYD.PIVOT;3 
FLOYD 
New (2/1) for procedure FLOYD 
1282 conses, 11.812 seconds 
T 

#LIST 
PROCEDURE FLOYD 

100 ASSERT N>=l 
110 ASSERT .FA(IO,JO:l<•IO<•JO<•N)A[IO](•A[JO] 
120 ASSERT .EX(ll:l<=ll<=N)X=A[ll] 
170 B ~ 1 
180 C ~ N 
200 LOOP 
205 ASSERT .FA(l2,J2:1<•12<=J2<•N)A[l2]<•A[J2] 
210 ASSERT l<=B<=C<=N 
215 ASSERT .EX(l3:8<=13<=C)X=A[l3] 
219 WHILE B#C: BEGIN 
220 ASSUME 80=8, CO•C 
230 D ~ (B+C)/2 
250 IF X > A(D] THEN B ~ D 
260 ELSE C ~ D 
290 LEMMA C-B<C0-80 
300 END 
305 l ~ B 
310 ASSERT l<=L<=N AND X•A(L] 

#SETUP 
1662 conses, 22.082 seconds 
Paths ready. 

Path #1: 205 ... 2i5-219(B#C) ... 230-250(X>A[D])-290-300-ZOO .•• Zl5 
New (3/2/l) for paths begtnntng 205 ... 215 
New (4/3/2/1) to evaluate .FA(I2,J2:12>0 6 IZ<•JZ 6 JZ<•N)A[IZ]<• 
A[J2] 
New (5/3/2/1) to evaluate .EX(13:C>=l3 6 B<=l3)X=A[l3] 
New (6/3/2/1) assuming TRUE in 219 
New (7/6/3/2/l) assuming TRUE tn 250 
New (8/7/6/3/2/1) for goal 290 
New (9/7/6/3/2/1) to bypass le11111a 290 
New (10/9/7/6/3/2/1) to evaluate .EX(l3:C>•l3 6 B<•l3)X=A[l3] 
New (11/9/7/6/3/2/1) for goal 215 
1546 conses, 33.67 seconds 
((8 7 6 3 2 1) (11 9 7 6 3 z 1)) 

Path #2: 205 ... 215-219(B#C) ... 230-250(X<•A[D]) .•. 300-200 ..• 215 
New (12/6/3/2/1) assumtng FALSE tn 250 
New (13/12/6/3/2/1) to evaluate .EX(l3:C>•l3 6 B<•l3)X•A[l3] 
New (14/12/6/3/2/1) for goal 215 
482 conses, 10.776 seconds 
((14 12 6 3 2 1)) 
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Path #3: 205 ... 215-219(B=C)•305-310 
New (15/3/2/l) assuming FALSE tn 219 
New (16/15/3/2/1} for goal 310 
171 conses, 4.369 seconds 
((16 15 3 2 1)) 

Path #4: 100 ... 215 
New (17/2/1) for paths beginning 100 ... 215 

C-9 

New (18/17/2/1) to evaluate .FA(IO,JO:IO>O & IO<=JO & JO<•N)A[IO]<= 
A[JO] 
New (19/17/2/1) to evaluate .EX(ll:Il>O & ll<=N)X=A[Il] 
New (20/17/2/1) for goal 205 
New (21/17/2/l) to evaluate .EX(l3:C>=l3 & 8<=13)X=A[l3] 
New (22/17/2/l) for goal 215 
744 conses, 19.146 seconds 
((20 17 2 l) (22 17 2 1)) 

#TH 

Path 11: 205 ... 215-219(BIC) ... 230-Z50(X>A[D])-Z90-300-ZOO .•• Z1S 

(8/7) for goal 290 
3.1 A .FA(IZ,J2:12>0 & 12<•J2 & J2<•N)A[l2]<•A[JZ] 
3.2 A B>O 
3.4 A C<=N 
3.5 A C>=I3 
3.6 A 8<=13 
3.7 A X=A[l3] 
6.2 A B=BO 
6.3 A C=CO 
7.1 A X>A((B+C)/2] 
8.1 G B=C-1 

(11/9) for goal 215 
• 

3.1 A .FA(l2,J2:12>0 & IZ<•JZ & JZ<•N)A[IZ]<•A[JZ] 
3.2 A B>O 
3.4 A C<=N 
3.5 A C>=l3 
3.6 A 8<=13 
3.7 A X=A[13] 
6.2 A B=BO 
6.3 A C=CO 
7.1 A X>A[(B+C)/Z] 
9.1 A B<=C-2 

11.1 G .FA(l3$l:C>•l3$1 & B+C<•2•13$l+l)XIA[l3$1] 

Path #2: 205 ... 215-219(B#C) ... Z30-2SO(X<•A[D]) ... 300-Z00 ..• 215 

(14/12) for goal 215 
3.1 A .FA(IZ,JZ:IZ>O & 12<•J2 & JZ<•N)A[IZ]<•A[J2] 
3.2 A B>O 
3.4 A C<•N 
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3.5 A C>=l3 
3.6 A B<=l3 
3.7 A X=A[l3] 
6.1 A B<C 
6.2 A B=BO 
6. 3 A C=CO . 

12.1 A X<=A((B+C)/2] 
14.l G .FA(l3$2:B+C>=2*13$2 & B<=13$2)X#A[l3$2] 

Path #3: 205 ... 215-219(B=C)-305-310 

(16/15) for goal 310 
3.1 A .FA(I2,J2:12>0 & 12<=J2 & J2<•N)A[l2]<•A[J2] 
3.2 A B>O 
3.4 A C<=N 
3.5 A C>=l3 
3.6 A B<=l3 
3.7 A X=A[l3] 

15.1 A B=C 
16.1 G X#A[B] 

Path #4: 100 ... 215 

(20/17) for goal 205 
17.1 A N>O 
17.2 A .FA(IO,JO:IO>O & IO<=JO & JO<•N)A[IO]<•A[JO] 
17. 3 A 11>0 
17.4 A 11<=N 
17. 5 A X=A[ 11] 
20.1 A 12>0 
20.2 A 12<=J2 
20.3 A J2<=N 
20.4 G A[12]>A[J2] 

(22/17) for goal 215 
17.1 A N>O 
17.2 A .FA(IO,JO:IO>O & IO<•JO & JO<•N)A[IO]<•A[JO] 
17 .3 A 11>0 
17.4 A 11<=N 
17. 5 A X=A[ 11] 
22.l G .FA(l3:13>0 & 13<=N)XIA[l3] 

#PROVE 
1 conses, .934 seconds 
Paths ready. 

Path #1: 205 ... 215-219(B#C) ... 230-250(X>A[D])-290-300-200 ... 215 
1 conses, .057 seconds 
((8 7 6 3 2 1) (11 9 7 6 3 2 1)) 

Proof for (8/7) for goal 290: 
New (23/8/7/6/3/2/1) for proof 
Proving (23/8) ... 
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New (24/23/8/7/6/3/2/1) to prove one disjunct of 23.5 
New (25/23/8/7/6/3/2/1) to prove rematning disjuncts of 23.5 
Proving (24/23) ... 
Success in (24/23) 
Proving (25/23) ... 
Failure'" (25/23) 
Failure in (23/8) 
No proof: 2477 conses, 48.415 seconds 

Proof for (11/9) for goal 215: 
New (26/11/9/7/6/3/2/1) for proof 
Proving (26/11) ... 
Success in (26/11) 
Proved: 784 conses, 11.267 seconds 

Path #2: 205 ... 215-219(B#C) ... 230-250(X<•A[D]) ... 300-200 .•. Zl5 
1 conses, .055 seconds 
((14 12 6 3 z 1)) 

Proof for (14/12) for goal 215: 
New. (27/14/12/6/3/2/1) for proof 
Proving (27/14) ... 
New (28/27/14/12/6/3/2/1) to show 27.Z by showing B+C<2•13 
Proving (28/27) ... 
New (29/28/27/14/12/6/3/2/1) to prove one disjunct of 28.6 
New (30/28/27/14/12/6/3/2/l) to prove rematntng disjuncts of 28 
Proving (29/28) ... 
Success in (29/28) 
Proving (30/28) ... 
Success in (30/28) 
Success in (28/27) 
Success in (27/14) 
Proved: 2029 conses, 39.271 seconds 

Path #3: 205 ... 215-219(B•C)-305-310 
1 conses, .054 seconds 
((16 15 3 2 1)) 

Proof for (16/15) for goal 310: 
New (31/16/15/3/2/1) for proof 
Proving (31/16) ... 
Success in (31/16) 
Proved: 267 conses, 5.006 seconds 

Path #4: 100 ... 215 
l conses, .043 seconds 
((20 17 2 1) (22 17 z 1)) 

Proof for (20/17) for goal 205: 
New (32/20/17/2/l) for proof 
Proving (32/20) ... 
Success in (32/20) 
Proved: 335 conses, 5.694 seconds 
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Proof for (22/17) for goal 215: 
New (33/22/17/2/1) for proof 
Proving (33/22) ... 
Success in (33/22) 
Proved: 272 conses, 5.434 seconds 

ITH 25 
3.1 A 
3.2 A 

23.3 A 
25.4 A 
25. 5 G 
25.6 G 
25.7 G 
-.-

.FA(l2,J2:12>0 & 12<=J2 & J2<=N)A[l2]<=A(J2} 
"B>O 

B<N 
A[B]<A[B+l] 
.FA(l2:12>0 & B>=I2)A[B]>=A[l2] 
.FA(J2:B<=J2 & J2<=N)A[B]<=A[J2] 
A[B]<=A[N] 
T 

#COUNTER 25 

Proof for (25/23) to p17ove remaining disjuncts of 23.5: 
New (36/25/23/8/7/6/3/2/1) for proof 
Proving (36/25) ... 
New (37/36/25/23/8/7/6/3/2/1) for counterexample 
Proving (37/36) ... 
Equalities: 

(from 3. 2) B = > 1 
Cancel 3.2: B>O 
Cancel 23.3: B<N 

37.1 N>=2 
Cancel 25.7: A[B]<=A[H] 

37.2 A[l]<=A[N] 
Cancel 25.4: A[B]<A[B+l] 

37.3 A[l]<A[2] 
Cancel 25.6: .FA(J2:B<=J2 & J2<=H)A[B]<=A[J2] 

37.4 .FA(J2:J2>0 & J2<=H)A[l]<=A[J2] 
Cancel 25.5: .FA(l2:12>0 & B>=IZ)A[B]>=A[12] 
[12=>1: A[l]>=A[I2] => T] 
Hatching 37.3 against 3.1 (score=70): 

J2 => 1 
12 => 2 

Hatching 37.2 against 3.1 (score=70): 
J2 => l 
12 => N 

From 37.2: A[l]>=A[N] => A[l]=A[N] 
From 37.1: N#l => T 
Hatching 37.1 against 37.4 (score=-150): 

J2 => N 
From 37.1: N<=O =>NIL 
From 37.2: A[l]<=A[N] => T 
Hatching 37.l against 3.1 (score=-150): 

12 => N 
[JZ=>N: J2=N & N>O => N>O] 
[J2=>H: A[J2]>=A[H] => T] 
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Equalities: 
(from 37.1) N => Z 

Cancel 37.1: N>=Z 
Cancel 37.Z: A[l]<=A[N] 
From 37.3: A[l]<=A[Z] => T 
Cancel 37.4: .FA(J2:JZ>O & J2<=N)A[l]<•A(J2] 
[J2=>1: A[l]<=A[J2] => T] 
[J2=>2: A[l]<=A[JZ] => A[l]<=A[Z]] 
From 37.3: A[l]<=A[2] => T 
Cancel 3.1: .FA(IZ,JZ:I2>0 & IZ<=JZ & J2<=N)A[l2]<=A{J2] 

37.5 .FA(IZ,JZ:l2>0 & J2<=2 & 12<•J2)A[l2]<•A[J2] 
Matching 37.3 against 37.5 (score=70): 

JZ => 1 
12 => 2 

Cancel 37.5: .FA(I2,J2:12>0 & J2<•2 & 12<•J2)A[12]<•A[J2] 
From 37.3: A(l]<=A[2] => T 
Equalities: 

(from 37.3) A[2] => 0 
Cancel 37.3: A[l]<A[2] 

37.6 A(l]<O 
Equalities: 

(from 37.6) A(l] => -1 
Cancel 37.6: A[l]<O 
Counterexample 1n (37/36) 
Counterexample in (36/25) 
Counterexample: 1354 conses, 57.767 seconds 

#VALUES 37 
CO•Z, BO•l, X•A[2], C•2, 13•2, B•l, N•2, A[2]•0,· A[l]•-1 
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IGET FINDERS 
FINDERS.PIVOT;Z 
FINDVAL 
New (2/1) for procedure FINDVAL 
FINDL 
New (3/1) for procedure FINDL 
1110 conses, 14.105 seconds 
T 

llN FINDVAL 

#LIST 
PROCEDURE FINDVAL 

110 ASSERT l<=B<C<=N 
120 ASSERT .EX(B<=$K<=C)X=A[K] 
130 ASSERT .FA(l,J:l<=l<=J<=N)A[I]<=A[J] 
140 D ~ (B+C)/2 
210 ASSUME X>A[O] 

.215 ASSUME B=l, C=2, N=Z, X=O, A[l]=-1 

C-14 

220 LEMMA .EX(Bl,Cl)(l<=Bl<=Cl<=N & .EX(Kl:Bl<=Kl<•Cl)X=A[Kl] & 

Cl-Bl<C-8) 

#PROVE 
1298 conses, 23.944 seconds 
Paths ready. 

Path 11: 110 ... zzo 
New (4/2/l) for paths beginning 110 ... 220 

110 ASSERT l<=B<C<=N 
In (4/2): 

4 .1 B>O 
4.2 B<C 
4.3 C<=N 

120 ASSERT .EX(B<=$K<=C)X=A[k] 
In (4/2): 
New (5/4/2/l) to evaluate .EX(K:C>=K & B<=K)X=A[K] 

5.1 C>=K 
5.2 B<=K 
4.4 C>=K 
4.5 B<=K 
4.6 X=A[K] 

130 ASSERT .FA(l,J:l<=I<=J<=N)A[l]<=A[J] 
In (4/2): 
New (6/4/2/1) to evaluate .FA(I,J:l>O & l<=J & J<=N)A[l]<=A[J] 

6. 1 I >O 
6.2 l<=J 
6.3 J<=N 
4.7 .FA(l,J:l>O & I<=J & J<=N)A[l]<•A[J] 

140 D ~ (B+C)/Z 
In (4/2): 
Set CVAL(D): (B+C)/Z 
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210 ASSUME X>A[D] 
In (4/2): 
CVAL(D) = (B+C)/2 
Eval: A[O] => A[(B+C)/2] 
Eval: X>A[D] => X>A[(B+C)/2] 

4.8 X>A[(B+C)/2] 
215 ASSUME 8:1, C=2, N•2, X•O, A[l]•-1 

In (4/2): 
Cancel 4.1: B>O 

4.9 B=l 
Set CVAL(D): (C+l)/2 
Set CVAL ( 8) : 1 

4. 10 C=Z 
Set CVAL(D): 1 
Set CVAL(C): Z 

4.11 N=Z 
Set CVAL(N): Z 

4 .12 X=O 
Set CVAL(X): 0 

4.13 A[l]=-1 
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220 LEMMA .EX(Bl,Cl)(l<=Bl<=Cl<=N & .EX(Kl:Bl<=Kl<=Cl)X•A[Kl] & 

Cl-Bl<C-8) 
In (4/2): 
Goal: .EX(Bl,Cl,Kl:Bl>O & Cl>=Kl & B+Cl<Bl+C & Bl<•Cl & Bl<•Kl & Cl< 
=N)X 
=A[Kl] 
New (7/4/2/1) to evaluate .EX(Bl,Cl,Kl:Bl>O & Cl>•Kl & B+Cl<Bl+C & 
Bl<= 
Cl & Bl<=Kl & Cl<=N)X=A[Kl] 
CVAL(B) = 1 
CVAL(C) = Z 
CVAL(N) = 2 

7.1 Bl=Cl 
Set CVAL(Cl): Bl 

7.2 81>0 
7.3 Cl>=Kl 
7.4 Cl<=2 

From 7.3 & 7.1: Bl<=Kl •> Bl•Kl 
7.5 Bl=Kl 

Set CVAL(Kl): Bl 
CVAL(X) = 0 
[Bl=>Cl: Bl=Cl & Bl>O & Cl>=Kl a Cl<•2 a Bl<•Kl 

=> Cl=Kl & (Cl=l ! Cl=2)] 
[Bl=>Cl: A[Kl]=O => A[Kl]=O] 
[Cl=>l: Cl=l & Cl=Kl => ~l=l] 
[Cl=>l: A[Kl]=O => A[Kl]=O] 
[Kl=>l: A[Kl]=O => A[l]=O] 
[Cl=>2: Cl=2 & Cl=Kl.=> Kl=Z] 
[Cl=>2: A[Kl]=O => A[Kl]=O] 
[Kl=>2: A[Kl]=O => A[2]=0] 
From 4.13: A[l]=O =>Nil . 
Eval: .EX(Bl,Cl,Kl:Bl>O & Cl>•Kl & B+Cl<Bl+C & Bl<•Cl & Bl<•Kl & Cl< 
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=N)X 
=A[Kl] => A[2]=0 
New (8/4/2/1) for goal 220 

8. 1 A[ 2 ]#0 
New (9/4/2/1) to evaluate .EX(Bl,Cl,Kl:Bl>O & Cl>=kl & B+Cl<Bl+C & 
Bl<= -
Cl & Bl<=Kl & Cl<=N)X=A[Kl] 
CVAL(B) = 1 
CVAL(C) = 2 
CVAL(N) = 2 

9.1 Bl=Cl 
Set CVAL(Cl): Bl 

9.2 Bl>O 
9.3 Cl>=Kl 
9.4 Cl<=Z 

From 9.3 & 9.1: Bl<=Kl => Bl=Kl 
9. 5 Bl=Kl 

Set CVAL(Kl): Bl 
CVAL(X) = 0 
[Bl=>Cl: Bl=Cl & Bl>O & Cl>=Kl & Cl<=2 & Bl<=Kl 

=> Cl=Kl & (Cl=l ! Cl=2)] 
[Bl=>Cl: A[Kl]=O => A[Kl]=O] 
[Cl=>l: Cl=l & Cl=Kl => Kl=l] 
[Cl=>l: A[Kl]=O => A[Kl]=O] 
[Kl=>l: A[Kl]=O => A[l]=O] 
[Cl=>2: Cl=2 & Cl=Kl => K1=2] 
[Cl=>2: A[Kl]=O => A[Kl]=O] 
[Kl=>2: A[Kl]=O => A(Z]=O] 
From 4.13: A[l]=O =>NIL 
Eval: .EX(Bl,Cl,Kl:Bl>O & Cl>=Kl & B+Cl<Bl+C & Bl<•Cl & Bl<•Kl & Cl< 
=N)X 
=A[Kl] => A[Z ]=O 
New (10/4/2/1) to bypass lenna 220 

10 .1 A[2]=0 
6032 conses, 151.672 seconds 
((8 4 2 1)) 

Proof for (8/4) for goal 220: 
New. ( 11/8/4/2/l) for proof 
Proving (11/8) ... 

4.2 A B<C 
4.3 A C<=N 
4.4 A C>=K 
4.5 A B<=K 
4.6 A X=A[K] 
4.7 A .FA(l,J:l>O & l<=J & J<=N)A[l]<•A(J] 
4.8 A X>A[(B+C)/2] 
4.9 A B=l 
4 .10 A C=2 
4.11 A N=2 
4.12 A X=O 
4.13 A A[l]=-1 
8.1 G A[2]10 
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Equa 1 it i es: 
(from 4.12) X => 0 
(from 4.11) H => 2 
(from 4.10) C => 2 
(from 4.9) 8 => l 

Cancel 4.9: B=l 
Cancel 4.10: C=2 
Cancel 4.11: N=2 
Cancel 4.12: X=O 
Cancel 4.5: B<=K 

11. 1 100 
Cancel 4.6: X=A[K] 

11.2 A[K]=O 
Cancel 4.4: .C>=K 
Cance 1 11 . 1: 100 

11.3 K=l ! K=2 
Cancel 4.3: C<=H 
Cancel 4.2: B<C 
Cancel 4.8: X>A[(B+C)/2] 
From 4.13: A[l]<O => T· 
Cancel 4.7: .FA(I,J:l>O & I<=J & J<=N)A[l]<•A[J] 

11.4 .FA(l,J:l>O & J<=2 & I<=J)A[l]<=A[J] 
Try proof by cases on 11.3: K=l ! K=2 
New (12/11/8/4/2/1) to prove one disjunct of 11.3 
New (13/11/8/4/2/1) to prove rema1n1ng dtsjuncts of 11.3 
Cancel 11.3: K=l ! K=2 

12.1 K=2 
Proving (12/11) ... 
Equalities: 

(from 12.1) K => 2 
Cancel 12.1: K=2 
Cancel 11.2: A[K]=O 
From 8.lc A[2]=0 =>Nil 
Success in (12/11) 
Cancel 11.3: K=l ! K=Z 

13.l K12 
Cancel 13.1: K12 

13.2 K=l 
Proving (13/11) ... 
Equalities: 

(from 13.2) K => 1 
Cancel 13.2: K=l 
Cancel 11.2: A(K]=O 
From 4.13: A[l]=O =>Nil 
Success in (13/11) 
Success in (11/8) 
Proved: 1050 conses, 35.074 seconds 
Success in (8/4) 



Appendix C 

#IN FINOL 

#LIST 
PROCEDURE FINOL 

100 ASSERT l<=B=C<=N 
110 ASSERT A[B]=X 
200 LEHHA .EX(L)(l<=L<=N & A[l]=X) 

#PROVE 
332 conses, 8.441 seconds 
Paths ready. 

Path #1: 100 ... ZOO 
New (14/3/1) for paths begtnntng 100 •.. 200 

100 ASSERT l<=B=C<=N 
In (14/3): 

14.1 B=C 
Set CVAL(C): B 

14.2 B>O 
14.3 C<=N 

110 ASSERT A[B]=X 
In (14/3): 

14.4 X=A[BJ 
Set CVAL(X): A[B] 

ZOO LEHHA .EX(L)(l<=L<=N & A[l]=X) 
In (14/3): 
Goal: .EX(l:L>O & l<=N)X=A[l] 
New ( 15/14/3/1 ). to evaluate .EX(l :L>O & L<•N)X•A[l] 

15.1 l>O 
15.Z L<=N 

CVAL(X) = A[B] 
Eval: .EX(L:L>O & L<=H)X=A[L] 

=> .EX(l:l>O & l<=N)A[B]=A[L] 
New (16/14/3/1) for goal ZOO 

16.1 .FA(l:l>O & L<=N)A[B]#A[L] 
New (17/14/3/1) to evaluate .EX(L:L>O & L<•N)X•A[l] 

17. 1 L >O 
17.2 L<=N 

CVAL(X) = A[B] 
Eval: .EX(l:l>O & l<=N)X=A[l] 

=> .EX(~:L>O & L<=N)A[B]=A[l] 
New (18/14/3/1) to bypass lenna 200 

18.1 L>O 
18.2 L<=N 
18.3 A[Bl=A[l] 

473 conses, 25.522 seconds 
((16 14 3 1)) 
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Proof for (16/14) for goal ZOO: 
New (19/16/14/3/1) for proof 
Proving (19/16) ... 

14. 1 A B=C 
14.2 A B>O 
14.3 A C<=N 
14.4 A X=A[B] 
16.l G .FA(L:L>O & L<=N)A(B]IA(l] 

Equalities: 
(from 14.1) C => 8 
(from 14.4) X => A[B] 

Cancel 14.4: X=A[B] 
Cancel 14.1: B=C 
Cancel 14.3: C<=N 

19 .1 B<=N 
[L=>B: B=L & L>O & L<=N => B>O & B<=N] 
[L=>B: NIL => NIL] 
From 19.1: B>N =>NIL 
From 14.2: B<=O => NIL 
Success in (19/16) 
Proved: 409 conses, 13.747 seconds 
Success in (16/14) 

C-19 



Programs verified D-1 

PROGRAMS VERIFIED 

This Appendix is a complete list of programs successfully verified by 
PIVOT. Proofs of King's Example 6, the Constable-Gries program, and 
Floyd's search program appear in Appendices A, B, and C respectively. 



Programs 
verified 

King's Example 1 

PROCEDURE Kl 
100 ASSERT Y=B>=O 
110 x ~ 0 
120 LOOP 
125 WHILE Y#O: BEGIN 
150 x ~ x + A 
160 y ~ y - 1 
170 ASSERT X=A*(B-Y) 
190 END 
200 ASSERT X=A*B 

D-2 

AND Y>=O 



Programs 
verified D-3 

King's Example 2 

PROCEDURE K2(A.B) 
100 ASSERT A>=O, B>=O 
110 Q +- 0 
120 R +- A 
200 LOOP 
210 ASSERT A=Q*B+R, R>=O 
220 WHILE R>=B: BEGIN 
300 Q +- Q+l 
310 R +- R-B 
320 END 
400 ASSERT A=Q*B+R, O<=R<B 



Programs 
verified 0-4 

King's Example 3 

PROCEDURE K3(A,B) 
100 ASSERT X=A, Y=B>=O 
110 z ~ 1 
200 LOOP 
210 ASSERT Y>=O, Z*(X**Y)=A**B 
220 WHILE Y#O: BEGIN 
300 IF Y MOD 2=1 THEN Z ~ Z*X 
310 y ~ Y/2 
320 x ._ x•x 
330 END 
400 ASSERT Z=A**B 



Programs 
verified 

King's Example 4 

PROCEDURE K4(A) 
100 ASSERT A>=2 
110 I +- 2 

200 : L: BEGIN 
300 LOOP 
310 ASSERT .FA(2<=$K<I)A MOD K#O, I<=A 
320 WHILE I<A: BEGIN 
400 IF A MOD I#O THEN I +- l+l 
410 ELSE BEGIN 
420 J ... 1 
430 EXIT L 
440 END 
450 END 
460 J ... 0 
500 END 
510 ASSERT J=O IMP .FA(2<=$K<A)A MOD K#O 
520 ASSERT J=l IMP A MOD I=O 
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Programs 
verified 0-6 

King's Example 5 

PROCEDURE K5(A,N) 
110 I c- 1 
200 LOOP 
210 ASSERT .FA(1<=$J<I)A[J]=O 
220 WHILE I<=N: BEGIN 
300 A[I] c- 0 
310 I .- I+1 
320 ENO 
400 ASSERT .FA(1<=$J<=N)A[J]=O 



Programs 
verified 

King's Example 6 
(see Appendix A for proof} 

PROCEDURE K6(A,N) 
100 ASSERT N>O 
110 I +- 2 
200 LOOP 
210 WHILE I<=N: BEGIN 
300 IF A[I-l]>A[I] THEN BEGIN 
400 X +- A[I]; A[I] +- A[I-1]; 
410 END 

A[I-1] +- X 

420 ASSERT .FA(1<=$K<I)A[IJ>=A[K] 
430 ASSERT I<=N 
440 I +- 1+1 
450 END 
500 ASSERT .FA(1<=$L<N)A[N]>=A[L] 
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Programs 
verified 

King's Example 7 

PROCEDURE K7 
200 :PASS: LOOP 
205 REPEAT: BEGIN 
210 J +- 0 
220 I +- 2 
300 LOOP 
350 ASSERT .FA(L:2<=L<I)(J#O OR A[L-l]<=A[L]} 
360 WHILE I<=N: BEGIN 
400 IF A(I-1] > A(I] THEN BEGIN 
410 X +- A[I-1]; A[I-1] +- A[I]; A[I] +- X 
420 J +- 1 
430 END 
450 I +- I + 1 
499 END 
550 IF J=O THEN EXIT PASS 
599 END 
600 ASSERT .FA(M:2<=M<=N)A[M-l]<=A(M] 
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Programs 
verified 

King's Example 8 

PROCEDURE K8(A,B) 
100 ASSERT A=DA 
110 y +- 0 

200 LOOP 
210 WHILE A#O: BEGIN 
220 ASSERT Y=(DA-A)*B 
300 IF A>O THEN BEGIN 
310 XB +- B 
320 LOOP 
330 WHILE XB#O: BEGIN 
340 IF XB>O THEN Y +- Y+l; XB 
350 ELSE Y +- Y-1; XB +- XB+l 
370 AS SERI" Y=(DA-A)*B+B-XB 
380 END 
390 A to- A-1 
399 END 
400 ELSE BEl:..iN 
410 XB +- B 
420 LOOP 
430 WHILE XB#O: BEGIN 
440 IF XB>O THEN Y +- Y-1; XB 
450 ELSE Y +- Y+l; XB +- XB+l 
470 ASSERT Y=(DA-A)*B-B+XB 
480 END 
490 A +- A+l 
499 END 
500' END 
510 ASSERT Y=DA*B 
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+- XB-1 

+- XB-1 



Programs 
verified 

King's Example 9 

D-10 

King's system was unable to verify this program. Several people 
subsequently remarked that his assertions were not strong enough, but 
King himself believes that the correct assertions are too complex for 
his system to handle. 

PROCEDURE K9(A,N} 
DECLARE ARRAY A 

110 I t- 1 
120 LOOP 
130 WHILE I < N: BEGIN 
131 J +- I+l 
132 X +- A[I] 
133 K +- I 
135 LOOP 
140 ASSERT I<=K<J<=N+l 
145 ASSERT I<N 
150 ASSERT X=A[K] 
160 ASSERTI>lIMP( .FA(M:I<=M<=N)(A[I-l]<=A[M])) 
170 ASSERT .FA(L:2<=L<I}(A[L-1]<=A[L]) 
180 ASSERT .FA(M:I<=M<J)(X<=A[M]) 
190 WHILE J <= N: BEGIN 
200 IF X > A[J] THEN BEGIN 
210 X t- A[J] 
220 K +- J 
230 ENO 
240 J ... J+l 
250 ENO 
260 A[K] +- A[I] 
270 A[I] t- X 
280 I +- I+l 
290 ENO 
300 ASSERT .FA(L:2<=L<=N}(A[L-1]<=A[L]) 



Programs 
verified D-11 

Constable-Gries program for enumerating formulas built from one 
constant symbol and one binary function symbol [Con8]. This program 
was adapted for PIVOT by replacing the original statement 250, A[k] ~ 
f(A[i],A[AS[i]]), by the one below, which essentially makes f the 
familiar function that enumerates the pairs of integers in "diagonal" 
order. This was only done because PIVOT cannot express the idea of 
enumerating all formulas without repetition. 

PROCEDURE CG 
DECLARE ARRAY A, AS, AD 
LET PAIR(X,Y)=(X+Y+1)*(X+Y)/2+Y+1 

100 K ~ 0 
110 I ~ 0 
120 A[O] ~ 0 
130 AS[O] ~ 0 
140 AD[O] ~ 0 
150 LOOP 
160 ASSERT .FA(J:O<=J<=K)(A[J]=J) 
170 ASSERT .FA(J:1<=J<=K)(AD[J]=J-1) 
180 ASSERT K=PAIR(I,AS[0]-1)-1 
190 ASSERT O<=I<=AS[O]<=K 
200 ASSERT .FA(J:O<=J<=I)(AS[J]+J=AS[O]) 
210 ASSERT .FA(J:I<J<=AS[O])(AS[J]+J=AS[0]+1) 
215 ASSERT .FA(J:AS[O]<J<=K)(AS[J]=O) 
220 REPEAT: BEGIN 
230 K ~ K+1 
250 A[K] ~ PAIR(A[I],A[AS[I]]) 
260 AS[K] ~ 0 
270 AD[K] ~ K-1 
280 AS[I] ~ AS[I]+1 
290 AD[O] ~ AS[O] 
300 I ~ AD[I] 
310 END 



Programs 
verified 

Hoare's FIND program 

PROCEDURE FIND 
198 ASSERT l<=F<=NN 
200 M ~ 1; N ~ NN 
210 :REDUCE: LOOP 
211 DECLARE l<=M<=F<=N<=NN 
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212 DECLARE .FA(Pl,Ql:l<=Pl<M<=Ql<=NN}A[Pl]<=A[Ql] 
213 DECLARE .FA(P2,Q2:1<=P2<=N<Q2<=NN}A[P2]<=A[Q2] 
220 WHILE M<N: BEGIN 
230 R ~ A[F] 
240 I ~ M; J ~ N 
250 LOOP 
255 DECLARE I>=M, J<=N 
256 DECLARE .FA(PO:l<=PO<I}A[PO]<=R 
257 DECLARE .FA(QO:J<QO<=NN)R<=A[QO] 
260 WHILE I<=J: BEGIN 
270 LOOP 
271 ASSERT O=O 
280 WHILE A[I]<R: I ~ I+l 
290 LOOP 
299 ASSERT A(I]>=R 
300 WHILE R<A[J]: J ~ J-1 
301 LEMMA A[J]<=R<=A(I] 
310 IF I<=J THEN BEGIN 
320 W ~ A[I]; A(I] ~ A(J]; A(J] ~ W 
321 LEMMA A(I]<=R<=A[J] 
330 I ~ I+l; J ~ J-1 
340 END 
350 END 
360 IF F<=J THEN N ~ J 
370 ELSE IF I<=F THEN M ~ I 
380 ELSE EXIT REDUCE 
430 END 
431 ASSERT .FA(P:l<=P<=F)A(P]<=A(F] 
432 ASSERT .FA(Q:F<=Q<=NN}A(F]<=A(Q] 



Programs 
verified 

Example from Floyd's IFIP paper 
(see Appendix C for proofs) 

PROCEDURE FLOYD 
100 ASSERT N>=l 
110 ASSERT .FA(IO,JO:l<=IO<=JO<=N}A[IO]<=A[JO] 
120 ASSERT .EX(I1:1<=I1<=N}X=A[I1] 
170 B .- 1 
180 C .- N 
200 LOOP 
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205 ASSERT .FA(I2,J2:1<=I2<=J2<=N)A[I2]<=A[J2] 
210 ASSERT l<=B<=C<=N 
215 ASSERT .EX(I3:B<=I3<=C)X=A[I3] 
219 WHILE B#C: BEGIN 
220 ASSUME BO=B, CO=C 
230 0 .- (B+C)/2 
250 IF X > A(D] THEN B .. D 
260 ELSE C .- 0 
290 LEMMA C-B<C0-80 
300 END 
305 L .- B 
310 ASSERT l<=L<=N AND X=A[L] 
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