
A case study in software restoration:
IBM 704/709/7090/7094

Paul McJones
May 5, 2006

Abstract
Software, to the extent that it is pure information, never decays. However the motivation
for writing a program, the techniques used in its construction, its method of operation,
and other context from the time of its creation and use is easily lost. Recovering that
context involves a process not unlike that of restoring historic hardware. By studying
some examples of individual and collective projects, we can extrapolate to how an
institution such as the Computer History Museum can contribute qualitatively and
quantitatively to this aspect of software history. We focus on recent work involving
software for the IBM 704/709/7090/7094 series.

Introduction
In November 2003 I decided to try to track down the source code of the original IBM 704
Fortran compiler. Along with other volunteers, staff, and trustees of the Computer
History Museum, I had joined the Software Collection Committee1 in order to explore
the software side of the Museum’s mission: “To preserve and present for posterity the
artifacts and stories of the information age.” Fortran was arguably the first higher-level
programming language, and its compiler was the first optimizing compiler, so this
seemed like a good way to gain experience with the issues of collecting, preserving, and
presenting historic software.

In the 30 months since then, I’ve made progress toward my original goal, but perhaps
more importantly I discovered a community of people who are engaged in a variety of
projects involving historic software from the same era. In this paper I refer to this
extended activity as “software restoration” in analogy to the “hardware restoration”
projects that are being carried out at the Computer History Museum and elsewhere.
Software restoration can result in runnable software, the ability to rebuild the software
from its source code, and a detailed appreciation for the obstacles that were overcome by
the original developers of that software.

Although I initially started looking for a specific program, IBM 704 Fortran, this paper
attempts to describe the larger “ecosystem” of software restoration for the IBM
704/709/7090/7094 family of computers. This line of computers spanned from the Von
Neumann-class IBM 701 to the IBM System/360, and served as the workhorse of the
scientific and engineering community during these Cold War years. Because each
machine in the line was upward compatible from its predecessor, software could be
reused. These factors led to the development of a number of operating systems,

1 See http://www.computerhistory.org/events/special_projects/scc.shtml .

http://www.computerhistory.org/events/special_projects/scc.shtml

programming languages, and applications written by IBM, customers, and the SHARE
user group2.

The next sections of this paper describe the work of this community, grouped under these
topics:

• Locating physical media: tapes, listings, etc.
• Transcribing to modern media
• Locating supporting materials: manuals, logic diagrams, etc.
• Locating processors, real or simulated
• Reacquiring expertise (reverse engineering)

I close with some observations on the nature of this community, and how institutions
such as the Computer History Museum can facilitate this work.

Physical media: tapes, listings, etc.
It is important to acknowledge the many contributions of Paul Pierce in launching the
field of preserving historic hardware and software from this era. A private collector, he
has assembled an impressive collection of computer hardware, software, and
documentation, and has made it available to the public. He has developed techniques for
reading old 7-track magnetic tapes, and offers his services to others contributing to the
public domain.

Pierce’s library includes a treasure trove of material for the IBM 704/709/7090/7094
family, including tapes and/or card decks containing3:

• Machine diagnostics
• SHARE library, including SAP assembler
• IBSYS operating system, including many compilers
• IBM System/360 emulator (executable only)
• CTSS timesharing system from Massachusetts Institute of Technology

Another source of historic software is source listings. Paper turns out to be longer-lasting
than many magnetic storage media. Some years ago, P.Z. Ingerman donated a listing of
the IBM 704 Fortran II compiler to the Smithsonian Institution’s National Museum of
American History4. Ingerman received it from IBM in 1959 in response to his request to
study it as part of his research into automatic coding problems at the University of
Pennsylvania. In January 2006, a digital scan of the listing was acquired by the Computer
History Museum.5

2 See Atsushi Akera. Voluntarism and the Fruits of Collaboration : The IBM User Group, Share.
Technology and Culture, Volume 42, Number 4, October 2001, pages 710-736.
3 See http://www.piercefuller.com/oldibm-shadow/709x.html .
4 NMAH catalog number 304,349.
5 See http://archive.computerhistory.org/resources/software/IBM/X3435.2006/ for digital scans of the
listing and a cover letter to Ingerman from A.L Harmon of IBM.

http://www.piercefuller.com/oldibm-shadow/709x.html
http://archive.computerhistory.org/resources/software/IBM/X3435.2006/

So far, listings represent the only known versions of the source code for the original Lisp
1.5 system. The oldest was donated to the MIT Library by Tim Hart, a member of the
original Lisp 1.5 project6. The Computer History Museum now has a digital scan of this
listing.7 A later listing of the Lisp 1.5 system, as adapted to the CTSS operating system
by Joel Moses and Robert R. Fenichel, has been located in Fenichel’s basement, who
entrusted it to me.

Transcription to modern media
Paul Pierce has developed techniques for reading 7-track tapes involving a 1970s Pertec
7-track tape drive, an analog-to-digital interface board, and custom software.8 Using
these techniques, and an older all-digital approach, he has read many tapes and put
images of them online.

A more labor intensive but still workable approach is manual transcription. For example,
Rich Cornwell has typed in machine diagnostics and parts of 704 Fortran II. Pascal
Bourguignon has typed in Tim Hart’s Lisp 1.5 listing9, and Cornwell and others are close
to having it error-free enough to run on Cornwell’s simulator.

Another approach that shows promise is an OCR system tuned for old line printer
typefaces by James Markevitch.

Yet another possibility is to take advantage of the human resources of Distributed
Proofreaders10, an organization set up to support digitization of public domain books in
association with Project Gutenberg11.

Manuals
Although it is a truism today that users never read the manual, documentation can play an
important role in recreating the context necessary to understand and use the software. Al
Kossow has assembled a magnificent collection of digitized manuals spanning from the
early 1950s into the 1980s.12

Paul Pierce also has a significant online collection of manuals, logic diagrams, etc.,
typically related to physical machines in his collection.13

6 MIT Library catalog number 1993.053.
7 Until it has been given a formal lot number, it is available at
http://community.computerhistory.org/scc/projects/LISP/LISP1.5-Bonnie-sBirthdayAssembly.pdf .
8 See “7-track Magnetic Tape” on http://www.piercefuller.com/collect/proj.html .
9 See http://groups.google.com/group/comp.lang.lisp/browse_frm/thread/67b1cabdf271870c .
10 See http://www.pgdp.net/
11 See http://www.pgdp.net/phpBB2/viewtopic.php?t=19898 (free registration required) for an initial
discussion of the possibility of proofreading the Smithsonian 704 Fortran II compiler listing.
12 See http://www.bitsavers.org/ . In particular, the subdirectories of pdf/ibm/ named 704/, 709/, 7090/,
7094/, and fortran/ are quite relevant to the subject of this paper.
13 See http://www.piercefuller.com/library/index.html .

http://community.computerhistory.org/scc/projects/LISP/LISP1.5-Bonnie-sBirthdayAssembly.pdf
http://www.piercefuller.com/collect/proj.html
http://groups.google.com/group/comp.lang.lisp/browse_frm/thread/67b1cabdf271870c
http://www.pgdp.net/
http://www.pgdp.net/phpBB2/viewtopic.php?t=19898
http://www.bitsavers.org/
http://www.piercefuller.com/library/index.html

Based on my experience, there are still significant caches of historic manuals, technical
reports, etc. in garages and basements around the world. The trick is to identify them and
collect or copy them before they are thrown out or damaged by insects or moisture.

Processors, real or simulated
Historic source code would be worth collecting and studying even if it couldn’t be
executed. However, executing it adds greatly to understanding and appreciation. In some
cases it’s possible to run the software on the original hardware, but as the years go by this
becomes increasingly more difficult. For example, Paul Pierce makes an effort to collect
complete computer systems that in principle could be put into running condition, but in
fact he has not attempted to operate his two IBM 709s or his IBM 7094 since he acquired
them.

Luckily, it’s quite feasible to simulate older, slower computers on newer, faster ones. Bob
Supnik, through his Computer History Simulation Project, has been instrumental in
writing simulators, obtaining freely available software, publishing papers, and helping
others get involved.14

Consistent with their historic importance, the IBM 704/709/709x machines have inspired
a number of simulators (mostly written in C):

• Paul Pierce wrote an early 709 simulator and related utilities for working with
tape images that served as a starting point for several of the other efforts.15

• Rob Storey wrote an emulator (in Borland Delphi) with a detailed graphical
simulation of the front panel and peripherals.16

• Dave Pitts extended Pierce’s 709 simulator to better support the 709x, and also
wrote a cross assembler and linker.17

• Bob Supnik added a 7094 simulator to SIMH version 3.6; his initial focus is
supporting the CTSS operating system.

• Rich Cornwell is independently developing a SIMH-based simulator. He used the
original diagnostics to debug his simulator, and is focusing on IBSYS and the
older 704/709 software.

• Fritz Schneider is writing an emulator (in Java) with a detailed graphical
simulation of the front panel and with a reference library linking to documentation
at bitsavers.org.

Reacquiring expertise
Let’s say you have software, a real or simulated computer to run it on, and documentation
– what do you do next? Unfortunately it’s not like popping a CD-ROM into a modern
personal computer and following the prompts. Early computers such as the IBM 704 had

14 See http://simh.trailing-edge.com/ .
15 See http://www.piercefuller.com/oldibm-shadow/709x.html and http://www.piercefuller.com/oldibm-
shadow/tool.html .
16 See http://members.optushome.com.au/intaemul/Emul7094.htm .
17 See http://www.cozx.com/~dpitts/ibm7090.html .

http://simh.trailing-edge.com/
http://www.piercefuller.com/oldibm-shadow/709x.html
http://www.piercefuller.com/oldibm-shadow/tool.html
http://www.piercefuller.com/oldibm-shadow/tool.html
http://members.optushome.com.au/intaemul/Emul7094.htm
http://www.cozx.com/%7Edpitts/ibm7090.html

no operating system – each program, such as the Fortran compiler, ran “stand alone”, and
the computer operator needed to be trained how to operate it. But at least the original
programmers were available to train the operators! Forty or fifty years later it is much
more challenging to run this software. Here are a few examples of recent progress with
respect to the IBM 704/709/7090 series:

• Rob Storey and James Fehlinger may have been first to boot IBSYS (from tape)
• Dave Pitts rebuilt IBSYS from source using his cross-assembler
• Rich Cornwell

o may have been first to boot IBSYS from disk
o rebuilt IBSYS from source, running on IBSYS
o got Fortran II running
o deciphered the SAP library tape format
o is currently getting Lisp 1.5 to run

• Bob Supnik is reverse engineering CTSS hardware18

I asked Rich Cornwell for some “lessons” he’s learned in this work. He gave me these
examples of the importance of hardware diagnostics in addition to the manuals:

• A 704 with less than 32K words did not have the full 15 bits in its index registers
• 7094 double precision is not fully specified in the Principles of Operation
• Software depended on undocumented features of “dangling tape writes” (no tape

mark)

Rich, who finds his intensive efforts very rewarding, notes: “I have found so many neat
tricks and learned so much about programming computers from examining old code,
where 32K of memory was considered a huge amount of memory (more than could be
used :-).”

How are these projects organized?
My quest for the original Fortran compiler source code began with several months of
following paths that seemed to lead to blind alleys. Gradually I became aware of people
like Paul Pierce, Al Kossow, and Bob Supnik, newsgroups like alt.folklore.computers,
and fascinating web sites of pioneers, historians, and hobbyists. Eventually word of my
interest spread to people who contacted me with relevant information19. Now I feel like a
member of a loosely-connected community of people interested in learning about,
collecting, preserving, and operating historic hardware and software. The skills and
interests of this community are wide-ranging and complementary. Working often in
isolation, but happy to share their hard-won knowledge, this community is slowly
reestablishing the technical context that existed almost half a century ago.

18 See http://simh.trailing-edge.com/docs/ctss_hardware.pdf .
19 The Dusty Decks blog I started to chronicle my progress has led to several important contacts. See
http://www.mcjones.org/dustydecks/ .

http://simh.trailing-edge.com/docs/ctss_hardware.pdf
http://www.mcjones.org/dustydecks/

How can institutions help?
Clearly the “classic” activities of museums – archival collections and public exhibits –
are of great value for software history. In addition, institutions such as the Computer
History Museum can contribute to the work being done by the informal community
described in this paper by provide support for “software restoration” projects. This
support could include:

• Holding workshops like the one at which this paper was presented
• Providing services such as media conversion
• Hosting online collaboration services (blogs, Wikis, etc.)
• Serving as a liaison to intellectual property owners
• Archiving the software and other artifacts
• Creating public exhibits

Coupling the initiative, enthusiasm, and domain expertise of the informal community
with the long-term stability and professional expertise of institutions is a promising
framework for progress in the field of software history.

About the author
Paul McJones learned to program the IBM 7094 in MAP assembler and Fortran IV as a
high school senior in 1966, and landed his first programming job a few months later.
He’s been continuously employed since then in software research and development.
Projects he’s worked on include the CAL Time-Sharing System for the CDC 6400, the
IBM System R relational database management system, the Pilot operating system for the
Xerox Star office automation System, the operating system for the DEC Firefly
multiprocessor workstation, implementations of the Snobol4, APL, and Modula-3
programming languages, and a variety of applications. He was named an ACM Fellow in
1994 and is currently a Principal Scientist at Adobe Systems Incorporated. He caught the
software history bug documenting reunions of CAL-TSS and System R alumni and as an
associate editor of the ACM SIGMOD Anthology. Since 2002 he’s volunteered at the
Computer History Museum on collections of documents and software for the IBM 7030
(“Stretch”), IBM 704 Fortran, and Lisp.

	?
	?
	?
	?
	?
	?
	?
	?
	?
	?
	?
	?
	?

